by Keyword: rhythm

Farré R, Rodríguez-Lázaro MA, Otero J, Gavara N, Sunyer R, Farré N, Gozal D, Almendros I, (2024). Low-cost, open-source device for simultaneously subjecting rodents to different circadian cycles of light, food, and temperature Frontiers In Physiology 15, 1356787

Exposure of experimental rodents to controlled cycles of light, food, and temperature is important when investigating alterations in circadian cycles that profoundly influence health and disease. However, applying such stimuli simultaneously is difficult in practice. We aimed to design, build, test, and open-source describe a simple device that subjects a conventional mouse cage to independent cycles of physiologically relevant environmental variables. The device is based on a box enclosing the rodent cage to modify the light, feeding, and temperature environments. The device provides temperature-controlled air conditioning (heating or cooling) by a Peltier module and includes programmable feeding and illumination. All functions are set by a user-friendly front panel for independent cycle programming. Bench testing with a model simulating the CO2 production of mice in the cage showed: a) suitable air renewal (by measuring actual ambient CO2), b) controlled realistic illumination at the mouse enclosure (measured by a photometer), c) stable temperature control, and d) correct cycling of light, feeding, and temperature. The cost of all the supplies (retail purchased by e-commerce) was <300 US$. Detailed technical information is open-source provided, allowing for any user to reliably reproduce or modify the device. This approach can considerably facilitate circadian research since using one of the described low-cost devices for any mouse group with a given light-food-temperature paradigm allows for all the experiments to be performed simultaneously, thereby requiring no changes in the light/temperature of a general-use laboratory. Copyright © 2024 Farré, Rodríguez-Lázaro, Otero, Gavara, Sunyer, Farré, Gozal and Almendros.

JTD Keywords: Animal experiment, Animal model, Animal research, Article, Circadian alteration, Circadian rhythm, Commercial phenomena, Controlled study, Cycling, Energy consumption, Experimental model, Feeding, Food, Food availability, Illumination, Intermittent fasting, Light, Light cycle, Light dark cycle, Mouse, Nonhuman, Open source technology, Open-source hardware, Performance, Photography, Research, Rodent, Temperature, Temperature cycle

Kennedy, KE, Abenza, JF, Rossetti, L, Trepat, X, Villoslada, P, Garcia-Ojalvo, J, (2024). Parametric modeling of mechanical effects on circadian oscillators Chaos 34, 013135

Circadian rhythms are archetypal examples of nonlinear oscillations. While these oscillations are usually attributed to circuits of biochemical interactions among clock genes and proteins, recent experimental studies reveal that they are also affected by the cell's mechanical environment. Here, we extend a standard biochemical model of circadian rhythmicity to include mechanical effects in a parametric manner. Using experimental observations to constrain the model, we suggest specific ways in which the mechanical signal might affect the clock. Additionally, a bifurcation analysis of the system predicts that these mechanical signals need to be within an optimal range for circadian oscillations to occur.

JTD Keywords: Circadian rhythm, Clocks, Coherence, Synchronization

Srinivasan, SY, Cler, M, Zapata-Arteaga, O, Dorling, B, Campoy-Quiles, M, Martinez, E, Engel, E, Perez-Amodio, S, Laromaine, A, (2023). Conductive Bacterial Nanocellulose-Polypyrrole Patches Promote Cardiomyocyte Differentiation Acs Applied Bio Materials 6, 2860-2874

The low endogenous regenerative capacity of the heart,added tothe prevalence of cardiovascular diseases, triggered the advent ofcardiac tissue engineering in the last decades. The myocardial nicheplays a critical role in directing the function and fate of cardiomyocytes;therefore, engineering a biomimetic scaffold holds excellent promise.We produced an electroconductive cardiac patch of bacterial nanocellulose(BC) with polypyrrole nanoparticles (Ppy NPs) to mimic the naturalmyocardial microenvironment. BC offers a 3D interconnected fiber structurewith high flexibility, which is ideal for hosting Ppy nanoparticles.BC-Ppy composites were produced by decorating the network of BC fibers(65 & PLUSMN; 12 nm) with conductive Ppy nanoparticles (83 & PLUSMN; 8 nm).Ppy NPs effectively augment the conductivity, surface roughness, andthickness of BC composites despite reducing scaffolds' transparency.BC-Ppy composites were flexible (up to 10 mM Ppy), maintained theirintricate 3D extracellular matrix-like mesh structure in all Ppy concentrationstested, and displayed electrical conductivities in the range of nativecardiac tissue. Furthermore, these materials exhibit tensile strength,surface roughness, and wettability values appropriate for their finaluse as cardiac patches. In vitro experiments withcardiac fibroblasts and H9c2 cells confirmed the exceptional biocompatibilityof BC-Ppy composites. BC-Ppy scaffolds improved cell viability andattachment, promoting a desirable cardiomyoblast morphology. Biochemicalanalyses revealed that H9c2 cells showed different cardiomyocyte phenotypesand distinct levels of maturity depending on the amount of Ppy inthe substrate used. Specifically, the employment of BC-Ppy compositesdrives partial H9c2 differentiation toward a cardiomyocyte-like phenotype.The scaffolds increase the expression of functional cardiac markersin H9c2 cells, indicative of a higher differentiation efficiency,which is not observed with plain BC. Our results highlight the remarkablepotential use of BC-Ppy scaffolds as a cardiac patch in tissue regenerativetherapies.

JTD Keywords: bacterial nanocellulose, cardiac patches, conducting polymers, polypyrrole, Arrhythmias, Bacterial nanocellulose, Biomaterials, Cardiac patches, Cell therapy, Cellulose, Conductingpolymers, H9c2, In-vitro, Polymer, Polypyrrole, Scaffolds, Tissue, Tissue engineering, Viability

Castagna, R, Kolarski, D, Durand-de Cuttoli, R, Maleeva, G, (2022). Orthogonal Control of Neuronal Circuits and Behavior Using Photopharmacology Journal Of Molecular Neuroscience 72, 1433-1442

Over the last decades, photopharmacology has gone far beyond its proof-of-concept stage to become a bona fide approach to study neural systems in vivo. Indeed, photopharmacological control has expanded over a wide range of endogenous targets, such as receptors, ion channels, transporters, kinases, lipids, and DNA transcription processes. In this review, we provide an overview of the recent progresses in the in vivo photopharmacological control of neuronal circuits and behavior. In particular, the use of small aquatic animals for the in vivo screening of photopharmacological compounds, the recent advances in optical modulation of complex behaviors in mice, and the development of adjacent techniques for light and drug delivery in vivo are described.

JTD Keywords: brain circuits, circadian rhythm, in vivo photomodulation, in vivo technology, neuronal receptors, Architecture, Azobenzene photoswitches, Brain circuits, Channels, Circadian rhythm, In vivo photomodulation, In vivo technology, Light, Modulator, Neuronal receptors, Optical control, Optogenetics, Pharmacology, Photopharmacology, Receptors, Systems

Oliveras, T, Lazaro, I, Rueda, F, Cediel, G, Bhatt, DL, Fito, M, Madrid-Gambin, F, Pozo, OJ, Harris, WS, Garcia-Garcia, C, Sala-Vila, A, Bayes-Genis, A, (2022). Circulating linoleic acid at the time of myocardial infarction and risk of primary ventricular fibrillation Scientific Reports 12, 4377

Primary ventricular fibrillation (PVF) is a major driver of cardiac arrest in the acute phase of ST-segment elevation myocardial infarction (STEMI). Enrichment of cardiomyocyte plasma membranes with dietary polyunsaturated fatty acids (PUFA) reduces vulnerability to PVF experimentally, but clinical data are scarce. PUFA status in serum phospholipids is a valid surrogate biomarker of PUFA status in cardiomyocytes within a wide range of dietary PUFA. In this nested case-control study (n = 58 cases of STEMI-driven PVF, n = 116 control non-PVF STEMI patients matched for age, sex, smoking status, dyslipidemia, diabetes mellitus and hypertension) we determined fatty acids in serum phospholipids by gas-chromatography, and assessed differences between cases and controls, applying the Benjamini-Hochberg procedure on nominal P-values to control the false discovery rate (FDR). Significant differences between cases and controls were restricted to linoleic acid (LA), with PVF patients showing a lower level (nominal P = 0.002; FDR-corrected P = 0.027). In a conditional logistic regression model, each one standard deviation increase in the proportion of LA was related to a 42% lower prevalence of PVF (odds ratio = 0.58; 95% confidence interval, 0.37, 0.90; P = 0.02). The association lasted after the inclusion of confounders. Thus, regular consumption of LA-rich foods (nuts, oils from seeds) may protect against ischemia-driven malignant arrhythmias.

JTD Keywords: Arrhythmias, Fish-oil, Omega-3-fatty-acids, Sudden cardiac death

Estefan, DP, Zucca, R, Arsiwalla, X, Principe, A, Zhang, H, Rocamora, R, Axmacher, N, Verschure, PFMJ, (2021). Volitional learning promotes theta phase coding in the human hippocampus Proceedings Of The National Academy Of Sciences Of The United States Of America 118, e2021238118

© 2021 National Academy of Sciences. All rights reserved. Electrophysiological studies in rodents show that active navigation enhances hippocampal theta oscillations (4–12 Hz), providing a temporal framework for stimulus-related neural codes. Here we show that active learning promotes a similar phase coding regime in humans, although in a lower frequency range (3–8 Hz). We analyzed intracranial electroencephalography (iEEG) from epilepsy patients who studied images under either volitional or passive learning conditions. Active learning increased memory performance and hippocampal theta oscillations and promoted a more accurate reactivation of stimulus-specific information during memory retrieval. Representational signals were clustered to opposite phases of the theta cycle during encoding and retrieval. Critically, during active but not passive learning, the temporal structure of intracycle reactivations in theta reflected the semantic similarity of stimuli, segregating conceptually similar items into more distant theta phases. Taken together, these results demonstrate a multilayered mechanism by which active learning improves memory via a phylogenetically old phase coding scheme.

JTD Keywords: active learning, dynamics, gamma-power, hippocampus, intracranial eeg, movement, navigation, neural phase coding, oscillations, representations, retrieval, rhythm, theta oscillations, toolbox, Active learning, Theta oscillations, Working-memory

Beiert, T., Knappe, V., Tiyerili, V., Stöckigt, F., Effelsberg, V., Linhart, M., Steinmetz, M., Klein, S., Schierwagen, R., Trebicka, J., Roell, W., Nickenig, G., Schrickel, J. W., Andrié, R. P., (2018). Chronic lower-dose relaxin administration protects from arrhythmia in experimental myocardial infarction due to anti-inflammatory and anti-fibrotic properties International Journal of Cardiology 250, 21-28

Background: The peptide hormone relaxin-2 (RLX) exerts beneficial effects during myocardial ischemia, but functional data on lower-dose RLX in myocardial infarction (MI) is lacking. Therefore, we investigated the impact of 75 μg/kg/d RLX treatment on electrical vulnerability and left ventricular function in a mouse model of MI. Methods and results: Standardized cryoinfarction of the left anterior ventricular wall was performed in mice. A two week treatment period with vehicle or RLX via subcutaneously implanted osmotic minipumps was started immediately after MI. The relaxin receptor RXFP1 was expressed on ventricular/atrial cardiomyocytes, myofibroblasts, macrophages and endothelial but not vascular smooth muscle cells of small coronary vessels. RLX treatment resulted in a significant reduction of ventricular tachycardia inducibility (vehicle: 91%, RLX: 18%, p < 0.0001) and increased epicardial conduction velocity in the left ventricle and borderzone. Furthermore, left ventricular function following MI was improved in RLX treated mice (left ventricular ejection fraction; vehicle: 41.1 ± 1.9%, RLX: 50.5 ± 3.5%, p = 0.04). Interestingly, scar formation was attenuated by RLX with decreased transcript expression of connective tissue growth factor. Transcript levels of the pro-inflammatory cytokines interleukin-6 and interleukin-1β were upregulated in hearts of vehicle treated animals compared to mice without MI. Application of RLX attenuated this inflammatory response. In addition, macrophage infiltration was reduced in the borderzone of RLX treated mice. Conclusion: Treatment with lower-dose RLX in mice prevents post-infarction ventricular tachycardia due to attenuation of scar formation and cardiac inflammation. Therefore, RLX could be evaluated as new therapeutic option in the treatment of MI.

JTD Keywords: Arrhythmia, Myocardial infarction, Relaxin-2, Ventricular tachycardia