by Keyword: hippo pathway
Rubi-Sans, Gerard, Nyga, Agata, Mateos-Timoneda, Miguel A, Engel, Elisabeth, (2025). Substrate stiffness-dependent activation of Hippo pathway in cancer associated fibroblasts Biomaterials Advances 166, 214061
The tumor microenvironment (TME) comprises a heterogenous cell population within a complex threedimensional (3D) extracellular matrix (ECM). Stromal cells within this TME are altered by signaling cues from cancer cells to support uncontrolled tumor growth and invasion events. Moreover, the ECM also plays a fundamental role in tumor development through pathological remodeling, stiffening and interaction with TME cells. In healthy tissues, Hippo signaling pathway actively contributes to tissue growth, cell proliferation and apoptosis. However, in cancer, the Hippo signaling pathway is highly dysregulated, leading to nuclear translocation of the YAP/TAZ complex, which directly contributes to uncontrolled cell proliferation and tissue growth, and ECM remodeling and stiffening processes. Here, we compare the effect of increasing cell culture substrate stiffness, derived from tumor progression, upon the dysregulation of the Hippo signaling pathway in colorectal cancer-associated fibroblasts (CAFs) and normal colorectal fibroblasts (NFs). We correlate the dysregulation of Hippo pathway with the magnitude of the traction forces exerted by healthy and malignant stromal cells. We found that ECM stiffening is crucial in Hippo pathway dysregulation in CAFs, but not in normal fibroblasts.
JTD Keywords: Cancer-associated fibroblasts, Hippo pathway, Organ size control, Tissu, Tumor microenvironment, Yap-ta, Yap/taz
Cassani, M, Fernandes, S, Cruz, JOD, Durikova, H, Vrbsky, J, Patocka, M, Hegrova, V, Klimovic, S, Pribyl, J, Debellis, D, Skladal, P, Cavalieri, F, Caruso, F, Forte, G, (2024). YAP Signaling Regulates the Cellular Uptake and Therapeutic Effect of Nanoparticles Advanced Science 11, e2302965
Interactions between living cells and nanoparticles are extensively studied to enhance the delivery of therapeutics. Nanoparticles size, shape, stiffness, and surface charge are regarded as the main features able to control the fate of cell-nanoparticle interactions. However, the clinical translation of nanotherapies has so far been limited, and there is a need to better understand the biology of cell-nanoparticle interactions. This study investigates the role of cellular mechanosensitive components in cell-nanoparticle interactions. It is demonstrated that the genetic and pharmacologic inhibition of yes-associated protein (YAP), a key component of cancer cell mechanosensing apparatus and Hippo pathway effector, improves nanoparticle internalization in triple-negative breast cancer cells regardless of nanoparticle properties or substrate characteristics. This process occurs through YAP-dependent regulation of endocytic pathways, cell mechanics, and membrane organization. Hence, the study proposes targeting YAP may sensitize triple-negative breast cancer cells to chemotherapy and increase the selectivity of nanotherapy.© 2023 The Authors. Advanced Science published by Wiley-VCH GmbH.
JTD Keywords: cancer treatment, cells, differentiation, hippo pathway, mechanics, mechanobiology, mechanotransduction, nanoparticles, progression, protein, resistance, yap-signaling, yap/taz, Adaptor proteins, signal transducing, Bio-nano interaction, Bio-nano interactions, Breast cancer cells, Cancer cells, Cancer treatment, Cells, Cellular therapeutics, Cellular uptake, Chemotherapy, Cytology, Diseases, Extracellular-matrix, Human, Humans, Mechano-biology, Mechanobiology, Metabolism, Nanoparticle, Nanoparticle interaction, Nanoparticles, Physiology, Protein serine threonine kinase, Protein serine-threonine kinases, Protein signaling, Signal transducing adaptor protein, Signal transduction, Therapeutic effects, Triple negative breast cancer, Triple negative breast neoplasms, Triple-negative breast cancers, Yap-signaling, Yap-signaling proteins, Yes-associated protein-signaling
Abenza, JF, Rossetti, L, Mouelhi, M, Burgués, J, Andreu, I, Kennedy, K, Roca-Cusachs, P, Marco, S, García-Ojalvo, J, Trepat, X, (2023). Mechanical control of the mammalian circadian clock via YAP/TAZ and TEAD Journal Of Cell Biology 222, e202209120
Autonomous circadian clocks exist in nearly every mammalian cell type. These cellular clocks are subjected to a multilayered regulation sensitive to the mechanochemical cell microenvironment. Whereas the biochemical signaling that controls the cellular circadian clock is increasingly well understood, mechanisms underlying regulation by mechanical cues are largely unknown. Here we show that the fibroblast circadian clock is mechanically regulated through YAP/TAZ nuclear levels. We use high-throughput analysis of single-cell circadian rhythms and apply controlled mechanical, biochemical, and genetic perturbations to study the expression of the clock gene Rev-erbα. We observe that Rev-erbα circadian oscillations are disrupted with YAP/TAZ nuclear translocation. By targeted mutations and overexpression of YAP/TAZ, we show that this mechanobiological regulation, which also impacts core components of the clock such as Bmal1 and Cry1, depends on the binding of YAP/TAZ to the transcriptional effector TEAD. This mechanism could explain the impairment of circadian rhythms observed when YAP/TAZ activity is upregulated, as in cancer and aging.© 2023 Abenza et al.
JTD Keywords: activation, dynamics, forces, growth, hippo pathway, liver, platform, time, transcription, Animals, Circadian clocks, Circadian rhythm, Gene-expression, Mammals, Signal transduction, Tea domain transcription factors, Transcriptional coactivator with pdz-binding motif proteins, Yap-signaling proteins
Elosegui-Artola, A., Andreu, I., Beedle, A. E. M., Lezamiz, A., Uroz, M., Kosmalska, A. J., Oria, R., Kechagia, J. Z., Rico-Lastres, P., Le Roux, A. L., Shanahan, C. M., Trepat, X., Navajas, D., Garcia-Manyes, S., Roca-Cusachs, P., (2017). Force triggers YAP nuclear entry by regulating transport across nuclear pores Cell 171, (6), 1397-1410
YAP is a mechanosensitive transcriptional activator with a critical role in cancer, regeneration, and organ size control. Here, we show that force applied to the nucleus directly drives YAP nuclear translocation by decreasing the mechanical restriction of nuclear pores to molecular transport. Exposure to a stiff environment leads cells to establish a mechanical connection between the nucleus and the cytoskeleton, allowing forces exerted through focal adhesions to reach the nucleus. Force transmission then leads to nuclear flattening, which stretches nuclear pores, reduces their mechanical resistance to molecular transport, and increases YAP nuclear import. The restriction to transport is further regulated by the mechanical stability of the transported protein, which determines both active nuclear transport of YAP and passive transport of small proteins. Our results unveil a mechanosensing mechanism mediated directly by nuclear pores, demonstrated for YAP but with potential general applicability in transcriptional regulation. Force-dependent changes in nuclear pores control protein access to the nucleus.
JTD Keywords: Atomic force microscopy, Hippo pathway, Mechanosensing, Mechanotransduction, Molecular mechanical stability, Nuclear mechanics, Nuclear pores, Nuclear transport, Rigidity sensing, Transcription regulation