DONATE

Publications

by Keyword: staphylococcus-aureus

Claudia, GM, Ivan, G, Laia, OM, Emilio, JP, Maria-Pau, G, Maurizio, V, Luis, CJ, Marta, P, (2023). Influence of ECAP process on mechanical, corrosion and bacterial properties of Zn-2Ag alloy for wound closure devices Materials & Design 228, 111817

Actual polymeric wound closure devices are not optimal for load-bearing applications due to the low mechanical properties and the risk of inflammation and bacterial infection mainly produced by multifil-ament and braided configurations. Biodegradable metallic Zn alloys are promising materials candidates; however, mechanical performance, corrosion behaviour, and biological response should be controlled in order to inhibit the risk of inflammation and bacterial infection. To this end, a Zn-2Ag (2 wt% Ag) alloy was processed by ECAP to evaluate the concurrent combined effect of grain refinement and Ag alloying on biodegradation and antibacterial activity. Two ECAP cycles were successfully applied to a Zn-2Ag alloy obtaining a homogeneous ultra-fine-grained structure in which nanoindentation maps suggested isotro-pic mechanical properties. Lower UTS and YS with higher elongation was reported after ECAP with similar corrosion rates as before processing. ECAP processed samples showed a homogeneous Ag+ release below the minimum inhibitory concentration for S. Aureus and no antibacterial effect was observed by diffusion. As expected, the presence of Ag in Zn-Ag alloys reduced bacterial attachment. Nevertheless, ECAP processed Zn-2Ag provided an excellent antibacterial activity after 3 h probably caused by the uniformly degraded and thus, non- stable, surface observed after bacterial adhesion.(c) 2023 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

JTD Keywords: Behavior, Binary alloys, Biodegradable zinc-alloys, Biomaterials, Equal channel angular pressing, Grain-refinement, In-vitro degradation, Mg, Microstructure, Nanoindentation, Progress, Staphylococcus-aureus, Temperature superplasticity, Ultrafine-grained materials, Zinc alloys, Zn alloys


Cendra, MD, Torrents, E, (2021). Pseudomonas aeruginosa biofilms and their partners in crime Biotechnology Advances 49, 107734

Pseudomonas aeruginosa biofilms and the capacity of the bacterium to coexist and interact with a broad range of microorganisms have a substantial clinical impact. This review focuses on the main traits of P. aeruginosa biofilms, such as the structural composition and regulatory networks involved, placing particular emphasis on the clinical challenges they represent in terms of antimicrobial susceptibility and biofilm infection clearance. Furthermore, the ability of P. aeruginosa to grow together with other microorganisms is a significant pathogenic attribute with clinical relevance; hence, the main microbial interactions of Pseudomonas are especially highlighted and detailed throughout this review. This article also explores the infections caused by single and polymicrobial biofilms of P. aeruginosa and the current models used to recreate them under laboratory conditions. Finally, the antimicrobial and antibiofilm strategies developed against P. aeruginosa mono and multispecies biofilms are detailed at the end of this review.

JTD Keywords: aeruginosa models, antibiotic-resistance, antimicrobials, bacterial biofilms, biofilms, c-di-gmp, chronic infections, enterococcus-faecalis, extracellular dna, in-vitro, lectin pa-iil, p, p. aeruginosa models, polymicrobial, polymicrobial interactions, staphylococcus-aureus, Antimicrobials, Biofilms, Chronic infections, P. aeruginosa models, Polymicrobial, Pseudomonas aeruginosa, Urinary-tract-infection