by Keyword: sterilization

Martínez-Blanco, A, Noé, S, Carreras-Vidal, L, Otero, J, Gavara, N, (2023). Cryosectioning of Hydrogels as a Reliable Approach to Increase Yield and Further Tune Mechanical Properties Gels 9, 834

Decellularized extracellular matrix (dECM) hydrogels have emerged as promising materials in tissue engineering. The steps to produce dECM hydrogels containing the bioactive epitopes found in the native matrix are often laborious, including the initial harvesting and decellularization of the animal organ. Furthermore, resulting hydrogels often exhibit weak mechanical properties that require the use of additional crosslinkers such as genipin to truly simulate the mechanical properties of the desired study tissue. In this work, we have developed a protocol to readily obtain tens of thin dECM hydrogel cryosections attached to a glass slide as support, to serve as scaffolds for two-dimensional (2D) or three-dimensional (3D) cell culture. Following extensive atomic force microscopy (AFM)-based mechanical characterization of dECM hydrogels crosslinked with increasing genipin concentrations (5 mM, 10 mM, and 20 mM), we provide detailed protocol recommendations for achieving dECM hydrogels of any biologically relevant stiffness. Given that our protocol requires hydrogel freezing, we also confirm that the approach taken can be further used to increase the mechanical properties of the scaffold in a controlled manner exhibiting twice the stiffness in highly crosslinked arrays. Finally, we explored the effect of ethanol-based short- and long-term sterilization on dECM hydrogels, showing that in some situations it may give rise to significant changes in hydrogel mechanical properties that need to be taken into account in experimental design. The hydrogel cryosections produced were shown to be biocompatible and support cell attachment and spreading for at least 72 h in culture. In brief, our proposed method may provide several advantages for tissue engineering: (1) easy availability and reduction in preparation time, (2) increase in the total hydrogel volume eventually used for experiments being able to obtain 15-22 slides from a 250 µL hydrogel) with a (3) reduction in scaffold variability (only a 17.5 ± 9.5% intraslide variability provided by the method), and (4) compatibility with live-cell imaging techniques or further cell characterization of cells.

JTD Keywords: atomic force microscopy, cryogel, cryosectioning, decellularization, extracellular matrix, genipin, sterilization, stiffness, young's modulus, Atomic force microscopy, Cryogel, Cryosectioning, Decellularization, Extracellular matrix, Genipin, Hydrogel, Sterilization, Stiffness, Young’s modulus

Lanzalaco, S, Weis, C, Traeger, KA, Turon, P, Alemán, C, Armelin, E, (2023). Mechanical Properties of Smart Polypropylene Meshes: Effects of Mesh Architecture, Plasma Treatment, Thermosensitive Coating, and Sterilization Process Acs Biomaterials Science & Engineering 9, 3699-3711

Smart polypropylene (PP) hernia meshes were proposed to detect surgical infections and to regulate cell attachment-modulated properties. For this purpose, lightweight and midweight meshes were modified by applying a plasma treatment for subsequent grafting of a thermosensitive hydrogel, poly(N-isopropylacrylamide) (PNIPAAm). However, both the physical treatment with plasma and the chemical processes required for the covalent incorporation of PNIPAAm can modify the mechanical properties of the mesh and thus have an influence in hernia repair procedures. In this work, the mechanical performance of plasma-treated and hydrogel-grafted meshes preheated at 37 °C has been compared with standard meshes using bursting and the suture pull out tests. Furthermore, the influence of the mesh architecture, the amount of grafted hydrogel, and the sterilization process on such properties have been examined. Results reveal that although the plasma treatment reduces the bursting and suture pull out forces, the thermosensitive hydrogel improves the mechanical resistance of the meshes. Moreover, the mechanical performance of the meshes coated with the PNIPAAm hydrogel is not influenced by ethylene oxide gas sterilization. Micrographs of the broken meshes evidence the role of the hydrogel as reinforcing coating for the PP filaments. Overall, results confirm that the modification of PP medical textiles with a biocompatible thermosensitive hydrogel do not affect, and even improve, the mechanical requirements necessary for the implantation of these prostheses in vivo.

JTD Keywords: biomaterials, bursting test, etox sterilization, hernia repair, hydrogels, infection, poly(n-isopropylacrylamide), pull outtest, surgical mesh, Abdominal-wall, Biomedical implant, Bursting test, Etox sterilization, Poly(n-isopropylacrylamide), Pull out test, Surgical mesh

Chausse, V, Iglesias, C, Bou-Petit, E, Ginebra, MP, Pegueroles, M, (2023). Chemical vs thermal accelerated hydrolytic degradation of 3D-printed PLLA/PLCL bioresorbable stents: Characterization and influence of sterilization Polymer Testing 117, 107817

Bioresorbable stents (BRS) are designed to provide initial sufficient mechanical support to prevent vessel recoil while being degraded until their complete resorption. Therefore, degradation rate of BRS plays a crucial role in successful stent performance. This work presents a complete study on the degradation of poly-llactic acid (PLLA) and poly(lactic-co-epsilon-caprolactone) (PLCL) stents fabricated by solvent-cast direct-writing (SC-DW) through two different accelerated assays: alkaline medium at 37 degrees C for 10 days and PBS at 50 degrees C for 4 months. On retrieval, degraded stents were characterized in terms of mass loss, molecular weight (Mw), thermal and mechanical properties. The results showed that under alkaline conditions, stents underwent surface erosion, whereas stents immersed in PBS at 50 degrees C experienced bulk degradation. M-n decrease was accurately described by the autocatalyzed kinetic model, with PLCL showing a degradation rate 1.5 times higher than PLLA. Additionally, stents were subjected to gamma-irradiation and ethylene oxide (EtO) sterilization. Whereas EtOsterilized stents remained structurally unaltered, gamma-irradiated stents presented severe deterioration as a result of extensive chain scission.

JTD Keywords: Acid, Behavior, Bioresorbable stents, Copolymer, Hydrolytic degradation, In-vitro degradation, Mechanical-properties, Molecular-weight, Poly(l-lactide), Poly-l-lactic acid, Poly-l-lactide, Scaffolds, Solvent-cast direct-writing, Sterilization