In this context, the understanding the protein-secretion dynamics from tissues is a critical factor in order to advance towards a better detection and new treatments for diseases such as Duchenne muscular dystrophy and inflammatory myopathy. However, the determination of the speed of release of such molecules from an in vivo tissue represents a major challenge due to the uncontrolled contributions from other tissues.
Now, researchers at IBEC have developed a platform which enables to discretize cytokine source. After growing 3D biomimetic tissues, researchers connected the “muscle-on-a-chip” to a high-sensitivity protein detection biosensing platform in order to measure the biological activity.
With this novel approach the scientists could monitor the time-dependence secretion of interleukines IL-6 and TNF-α resulting from the electrical and chemical stimulation of 3D skeletal muscle tissues.
This novel and affordable methodology could contribute not only to a better understanding of IL-6 and TNF-α in muscle related inflammation process, but also to further metabolic-disorder studies. This revolutionary technology can be exported to any laboratory environment and can have a huge impact on the drug-screening process for any organ system.
Reference article; M. A. Ortega, X. Fernández-Garibay, A. G. Castaño, F. De Chiara, A. Hernández-Albors, J. Balaguer-Trias and J. Ramon-Azcon. Muscle-on-a-chip with an on-site multiplexed biosensing system for in situ monitoring of secreted IL-6 and TNF-α. Lab Chip, 2019,19, 2568-2580. 10.1039/C9LC00285E.
For further information, please contact Àngels López from the Communications Department: alopez@ibecbarcelona.eu