Year 2014

By year:[ 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 ]

Engel, E., Planell, J. A., Castaño, O., Navarro, M., (2014). Glass nanoparticles Universitat Politècnica de Catalunya; Fundació Institut de Bioenginyeria de Catalunya , (PCT/IB2014/000522)

Torrents, E., Albericio, F., Miret, L., (2014). Primary hydroxylamines and uses thereof Fundació Institut de Bioenginyeria de Catalunya; Fundació Institut de Recerca Biomédica , (EP14382032.2)

Groth, T., Guduru, D., Altankov, George, Zenoby-Wong, M., Millan, C., Cavalli, E., Kesti, M., (2014). Procedure for making scaffold structures for tissue engineering applications, implants and surgery grafts by means of layer-by-layer method Martin Lutter University-Halle-Wittenberg; Fundació Institut de Bioenginyeria de Catalunya; Eidgenoessische Technische Hochschule Zuerich , (DE 10 2014 017 950.8)

Pujol, A., Urbán, P., Riera, C., Fisa, R., Molina, I., Salvador, F., Estelrich, J., Fernàndez-Busquets, X., (2014). Application of quantum dots to the study of liposome targeting in leishmaniasis and malaria International Journal of Theoretical and Applied Nanotechnology 2, (1), 1-8

Nanotechnological devices for therapeutic applications are massively addressed to diseases prevalent in the developed world, particularly cancer, because of the wrong assumption (for both ethical and technical reasons) that nanomedicines are too expensive and thus they can not be applied to diseases of poverty. Here we have applied quantum dots to study at the cellular level the delivery of the contents of liposomes to erythrocytes infected by the malaria parasite Plasmodium falciparum, and to macrophages infected by the leishmaniasis causative agent Leishmania infantum. A number of works have reported on the encapsulation in liposomes of drugs against both diseases as a strategy to increase therapeutic efficacy and decrease unspecific toxicity. Liposome-carried drugs end up inside Plasmodium-infected red blood cells (pRBCs) and in the phagolysosome system of Leishmania-infected macrophages but some knowledge gaps still obscure subcellular events related to these processes. As a proof of concept, we have used confocal fluorescence microscopy to follow the fate in pRBCs and infected macrophages of quantum dots encapsulated in liposomes, and of lysosomes, leishmaniasis and malaria parasites, nuclei, and phagosomes. Our data indicate that liposomes merge their lipid bilayers with pRBC plasma membranes but are engulfed by macrophages, where they fuse with lysosomes. Lysosomes have not been observed to join with phagosomes harboring single Leishmania parasites, whereas in phagosomes where the parasite has divided there is lysosome-specific fluorescence with a concomitant disappearance of lysosomes from the cytosol. In later stages, all the lysosome-specific label is found inside phagosomes whereas the phagosomal marker cadaverine strongly stains the macrophage nucleus, suggesting that Leishmania infection induces in its later stages nuclear degeneration and, possibly, apoptosis of the host cell. These results indicate that induction of macrophage apoptosis should be explored as a possible strategy used by Leishmania to prepare its egress.

Keywords: Leishmania infantum, Leishmaniasis Liposomes, Malaria, Nanomedicine, Nanotechnology, Plasmodium falciparum, Quantum dots

Aviles, A. I., Sobrevilla, P., Casals, A., (2014). An approach for physiological motion compensation in robotic-assisted cardiac surgery Experimental & Clinical Cardiology 20, (11), 6713-6724

The lack of physiological motion compensation is a major problem in robotic-assisted cardiac surgery. Since the heart is beating while the surgeon carried out the procedure, dexterity of the surgeon’s and precision are compromised. Due to the operative space and the visibility of the surgical field are reduced, the most practical solution is the use of computer vision techniques. The lack of efficiency and robustness of the existing proposals make physiological motion compensation to be considered an open problem. In this work a novel solution to solve this problem based on the minimization of an energy functional is presented. It is described in the three-dimensional space using the l1−regularized optimization class in which cubic b-splines are used to represent the changes produced on the heart surface. Moreover, the logarithmic barrier function is applied to create an approximation of the total energy in order to avoid its non-differentiability. According to the results, this proposal is able to deal with complex deformations, requires a short computational time and gives a small error.

Keywords: Beating heart surgery, Image analysis, Motion compensation

Eckelt, Kay, Masanas, Helena, Llobet, Artur, Gorostiza, P., (2014). Automated high-throughput measurement of body movements and cardiac activity of Xenopus tropicalis tadpoles Journal of Biological Methods 1, (2), e9

Xenopus tadpoles are an emerging model for developmental, genetic and behavioral studies. A small size, optical accessibility of most of their organs, together with a close genetic and structural relationship to humans make them a convenient experimental model. However, there is only a limited toolset available to measure behavior and organ function of these animals at medium or high-throughput. Herein, we describe an imaging-based platform to quantify body and autonomic movements of Xenopus tropicalis tadpoles of advanced developmental stages. Animals alternate periods of quiescence and locomotor movements and display buccal pumping for oxygen uptake from water and rhythmic cardiac movements. We imaged up to 24 animals in parallel and automatically tracked and quantified their movements by using image analysis software. Animal trajectories, moved distances, activity time, buccal pumping rates and heart beat rates were calculated and used to characterize the effects of test compounds. We evaluated the effects of propranolol and atropine, observing a dose-dependent bradycardia and tachycardia, respectively. This imaging and analysis platform is a simple, cost-effective high-throughput in vivo assay system for genetic, toxicological or pharmacological characterizations.

Keywords: Xenopus tropicalis, Animal behavior, Cardiac imaging, Motion analysis, Animal tracking, Hhigh-throughput in vivo assay

Palleja, T., Balsa, R., Tresanchez, M., Moreno, J., Teixido, M., Font, D., Marco, S., Pomareda, V., Palacin, J., (2014). Corridor gas-leak localization using a mobile Robot with a photo ionization detector sensor Sensor Letters 12, (6-7), 974-977

The use of an autonomous mobile robot to locate gas-leaks and air quality monitoring in indoor environments are promising tasks that will avoid risky human operations. However, these are challenging tasks due to the chaotic gas profile propagation originated by uncontrolled air flows. This paper proposes the localization of an acetone gas-leak in a 44 m-length indoor corridor with a mobile robot equipped with a PID sensor. This paper assesses the influence of the mobile robot velocity and the relative height of the PID sensor in the profile of the measurements. The results show weak influence of the robot velocity and strong influence of the relative height of the PID sensor. An estimate of the gas-leak location is also performed by computing the center of mass of the highest gas concentrations.

Keywords: Gas source detection, LIDAR sensor, Mobile robot, PID sensor, SLAM, Acetone, Air quality, Gases, Indoor air pollution, Mobile robots, Robots, Air quality monitoring, Autonomous Mobile Robot, Gas sources, Indoor environment, Leak localization, LIDAR sensors, Profile propagation, SLAM, Ionization of gases

Caballero, D., Samitier, J., (2014). Different strategies for the fabrication of cell culture chambers for live-cell imaging studies Chips and Tips 14, (12), 1-5

Perez, Roman A., Riccardi, Kiara, Altankov, George, Ginebra, Maria-Pau, (2014). Dynamic cell culture on calcium phosphate microcarriers for bone tissue engineering applications Journal of Tissue Engineering 5, 2041731414543965

Developing appropriate cell culturing techniques to populate scaffolds has become a great challenge in tissue engineering. This work describes the use of spinner flask dynamic cell cultures to populate hydroxyapatite microcarriers for bone tissue engineering. The microcarriers were obtained through the emulsion of a self-setting aqueous α-tricalcium phosphate slurry in oil. After setting, hydroxyapatite microcarriers were obtained. The incorporation of gelatin in the liquid phase of the α-tricalcium phosphate slurry allowed obtaining hybrid gelatin/hydroxyapatite-microcarriers. Initial cell attachment on the microcarriers was strongly influenced by the speed of the dynamic culture, achieving higher attachment at low speed (40 r/min) as compared to high speed (80 r/min). Under moderate culture speeds (40 r/min), the number of cells present in the culture as well as the number of microcarrier-containing cells considerably increased after 3 days, particularly in the gelatin-containing microcarriers. At longer culture times in dynamic culture, hydroxyapatite-containing microcarriers formed aggregates containing viable and extracellular matrix proteins, with a significantly higher number of cells compared to static cultures.

Cendra, M. M., Torrents, E., (2014). Enzims essencials per a la vida Treballs de la Societat Catalana de Biologia 65, 64-67

Les ribonucleòtid-reductases (RNR) són enzims essencials per a tota cèllula, perquè fan la transformació dels ribonucleòtids a desoxiribonucleòtids, els quals són necessaris per a la síntesi de l’àcid desoxiribonucleic (DNA). És evident que les RNR són enzims ancestrals i clau en l’evolució del material genètic que hi ha actualment, i són essencials per a l’evolució de tots els organismes que hi ha sobre la Terra. A causa de l’essencialitat de la reacció que fan aquests enzims, es poden considerar una diana ideal per al disseny de compostos que inhibeixen la replicació cel·lular, ja sigui en cèl·lules eucariòtiques (incloent-hi cèl·lules cancerígenes), com agents bacterians infecciosos.

Rajasekaran, Vijaykumar, Aranda, Joan, Casals, Alicia, (2014). Recovering planned trajectories in robotic rehabilitation therapies under the effect of disturbances International Journal of System Dynamics Applications 3, (2), 34-49

Robotic rehabilitation is an emerging technology in the field of Neurorehabilitation, which aims to achieve an effective patient recovery. This research focusses on the control strategy for an assistive exoskeleton aiming to reduce the effects of disturbances on planned trajectories during rehabilitation therapies. Disturbances are mostly caused by muscle synergies or by unpredictable actions produced by functional electrical stimulation. The effect of these disturbances can be either assistive or resistive forces depending on the patient's movement, which increase or decrease the speed of the affected joints by forcing the control unit to act consequently. In some therapies, like gait assistance, it is also essential to maintain synchronization between joint movements, to ensure a dynamic stability. A force control approach is used for all the joints individually, while two control methods are defined to act when disturbances are detected: Cartesian position control (Cartesian level) and Variable execution speed (joint level). The trajectory to be followed by the patient is previously recorded using an active exoskeleton, H1, worn by healthy subjects. A realistic simulation model of the exoskeleton is used for testing the effect of disturbances on the particular joints and on the planned trajectory and for evaluating the performance of the two proposed control methods. The performances of the presented methods are evaluated by comparing the resulting trajectories with respect to those planned. The evaluation of the most suitable method is performed considering the following factors: stability, minimum time delay and synchronization of the joints.

Rigat, L., Homs, A., Samitier, J., (2014). Reservoir poly(dimethylsiloxane) cap fabrication Chips and Tips 14, (10), 1-4

Rigat, L., Homs, A., Samitier, J., (2014). Simple alignment marks patterning for multilayered master fabrication Chips and Tips 14, (3), 1-7

Rigat, L., Homs, A., Samitier, J., (2014). Simple fabrication of three-dimensional ramped microstructures using SU-8 negative photoresist Chips and Tips 14, (3), 1-5

Oliva, A. M., Homs-Corbera, A., Torrents, E., Juarez, A., Samitier, J., (2014). Synergystic effect of temperature and electric field intensity in Escherichia coli inactivation Micro and Nanosystems 6, (2), 79-86

Electric Fields are increasingly used to manipulate bacteria. However, there is no systematic and definitive study on how the different electric parameters change bacteria viability. Here we present a study on the effects of electric field intensity and temperature to bacterial cultures. Escherichia coli colonies have been exposed to different electric field intensities at 1MHz during 5 minutes by means of a microfluidic device specially designed for the experiment. From the analysis of the results it is possible to see that Escherichia coli survival rate diminishes when applying field intensities as low as 220V during 5 minutes. Death rates also increase when stronger fields are applied. However, viability of survived bacteria is maintained. Additionally, temperature shows a synergistic effect with voltage. When temperature was increased, results showed a stronger sensitivity of cells to the electric field. Moreover, the expression patterns of Outer Membrane Protein A and Ribosomal Proteins differ in control and treated samples, suggesting changes in bacterial metabolism and structure.

Keywords: E. coli, Electric field, Temperature, Viability

Isetta, V., León, C., Torres, M., Embid, C., Roca, J., Navajas, D., Farré, R., Montserrat, J. M., (2014). Telemedicine-based approach for obstructive sleep apnea management: Building evidence Interactive Journal of Medical Research 3, (1), e6

Background: Telemedicine seems to offer reliable solutions to health care challenges, but significant contradictory results were recently found. Therefore, it is crucial to carefully select outcomes and target patients who may take advantage of this technology. Continuous positive airway pressure (CPAP) therapy compliance is essential to treat patients with obstructive sleep apnea (OSA). We believe that OSA patients could benefit greatly from a telemedicine approach for CPAP therapy management. Objective: The objective of our study was to evaluate the application of a telemedicine-based approach in the CPAP therapy management, focusing on patients' CPAP follow-up and training. Methods: We performed two studies. First, (study 1) we enrolled 50 consecutive OSA patients who came to our sleep center for the CPAP follow-up visit. Patients performed a teleconsultation with a physician, and once finalized, they were asked to answer anonymously to a questionnaire regarding their opinion about the teleconsultation. In a second randomized controlled trial (RCT) (study 2). we included 40 OSA patients scheduled for CPAP training. There were 20 that received the usual face-to-face training and 20 that received the training via videoconference. After the session, they were blindly evaluated on what they learned about OSA and mask placement. Results: More than 95% (49/50) of the interviewed patients were satisfied with the teleconsultation, and 66% (33/50) of them answered that the teleconsultation could replace 50%-100% of their CPAP follow-up visits. Regarding the RCT patients who received the CPAP training via videoconference demonstrated the same knowledge about OSA and CPAP therapy as the face-to-face group (mean 93.6% of correct answers vs mean 92.1%; P=.935). Performance on practical skills (mask and headgear placement, leaks avoidance) was also similar between the two groups. Conclusions: OSA patients gave a positive feedback about the use of teleconsultation for CPAP follow-up, and the CPAP training based on a telemedicine approach proved to be as effective as face-to-face training. These results support the use of this telemedicine-based approach as a valuable strategy for patients' CPAP training and clinical follow-up.

Keywords: CPAP therapy, Sleep apnea, Teleconsultation, Telemedicine

del Moral Zamora, B., Azpeitia, J. M. Á, Farrarons, J. C., Català, P. L. M., Corbera, A. H., Juárez, A., Samitier, J., (2014). Towards point-of-use dielectrophoretic methods: A new portable multiphase generator for bacteria concentration Micro and Nanosystems 6, (2), 71-78

This manuscript presents a portable and low cost electronic system for specific point-of-use dielectrophoresis applications. The system is composed of two main modules: a) a multiphase generator based on a Class E amplifier, which provides 4 sinusoidal signals (0°, 90°, 180°, 270°) at 1 MHz with variable output voltage up to 10 Vpp (Vm) and an output driving current of 1 A; and b) a dielectrophoresis-based microfluidic chip containing two interdigitated electrodes. The system has been validated by concentrating Escherichia coli (E. coli) at 1 MHz while applying a continuous flow of 5 µL/min. The device functionalities were verified under different conditions, achieving an 83% trapping efficiency when counter-phased signals are used.

Keywords: Cell Concentrator, Class E amplifier, Dielectrophoresis, Electronics, Lab-on-a-chip (LOC), Low cost, Portable device

Fernàndez-Busquets, X., (2014). Toy kit against malaria: Magic bullets, LEGO, Trojan horses and Russian dolls Therapeutic Delivery 5, (10), 1049-1052

Vedula, S. R. K., Hirata, H., Nai, M. H., Brugués, A., Toyama, Y., Trepat, X., Lim, C. T., Ladoux, B., (2014). Epithelial bridges maintain tissue integrity during collective cell migration Nature Materials 13, (1), 87-96

The ability of skin to act as a barrier is primarily determined by the efficiency of skin cells to maintain and restore its continuity and integrity. In fact, during wound healing keratinocytes migrate collectively to maintain their cohesion despite heterogeneities in the extracellular matrix. Here, we show that monolayers of human keratinocytes migrating along functionalized micropatterned surfaces comprising alternating strips of extracellular matrix (fibronectin) and non-adherent polymer form suspended multicellular bridges over the non-adherent areas. The bridges are held together by intercellular adhesion and are subjected to considerable tension, as indicated by the presence of prominent actin bundles. We also show that a model based on force propagation through an elastic material reproduces the main features of bridge maintenance and tension distribution. Our findings suggest that multicellular bridges maintain tissue integrity during wound healing when cell-substrate interactions are weak and may prove helpful in the design of artificial scaffolds for skin regeneration.

Elosegui, A., Bazellières, E., Allen, M. D., Andreu, I., Oria, R., Sunyer, R., Gomm, J. J., Marshall, J. F., Jones, J. L., Trepat, X., Roca-Cusachs, P., (2014). Rigidity sensing and adaptation through regulation of integrin types Nature Materials 13, (6), 631-637

Tissue rigidity regulates processes in development, cancer and wound healing. However, how cells detect rigidity, and thereby modulate their behaviour, remains unknown. Here, we show that sensing and adaptation to matrix rigidity in breast myoepithelial cells is determined by the bond dynamics of different integrin types. Cell binding to fibronectin through either

Brugués, A., Anon, E., Conte, V., Veldhuis, J. H., Gupta, M., Colombelli, J., Muñoz, J. J., Brodland, G. W., Ladoux, B., Trepat, X., (2014). Forces driving epithelial wound healing Nature Physics 10, (9), 683–690

A fundamental feature of multicellular organisms is their ability to self-repair wounds through the movement of epithelial cells into the damaged area. This collective cellular movement is commonly attributed to a combination of cell crawling and 'purse-string' contraction of a supracellular actomyosin ring. Here we show by direct experimental measurement that these two mechanisms are insufficient to explain force patterns observed during wound closure. At early stages of the process, leading actin protrusions generate traction forces that point away from the wound, showing that wound closure is initially driven by cell crawling. At later stages, we observed unanticipated patterns of traction forces pointing towards the wound. Such patterns have strong force components that are both radial and tangential to the wound. We show that these force components arise from tensions transmitted by a heterogeneous actomyosin ring to the underlying substrate through focal adhesions. The structural and mechanical organization reported here provides cells with a mechanism to close the wound by cooperatively compressing the underlying substrate.

Aragonès, Albert C., Darwish, Nadim, Saletra, Wojciech J., Pérez-García, Ll., Sanz, Fausto, Puigmartí-Luis, Josep, Amabilino, David B., Díez-Pérez, Ismael, (2014). Highly conductive single-molecule wires with controlled orientation by coordination of metalloporphyrins Nano Letters 14, (8), 4751-4756

Porphyrin-based molecular wires are promising candidates for nanoelectronic and photovoltaic devices due to the porphyrin chemical stability and unique optoelectronic properties. An important aim toward exploiting single porphyrin molecules in nanoscale devices is to possess the ability to control the electrical pathways across them. Herein, we demonstrate a method to build single-molecule wires with metalloporphyrins via their central metal ion by chemically modifying both an STM tip and surface electrodes with pyridin-4-yl-methanethiol, a molecule that has strong affinity for coordination with the metal ion of the porphyrin. The new flat configuration resulted in single-molecule junctions of exceedingly high lifetime and of conductance 3 orders of magnitude larger than that obtained previously for similar porphyrin molecules but wired from either end of the porphyrin ring. This work presents a new concept of building highly efficient single-molecule electrical contacts by exploiting metal coordination chemistry. Porphyrin-based molecular wires are promising candidates for nanoelectronic and photovoltaic devices due to the porphyrin chemical stability and unique optoelectronic properties. An important aim toward exploiting single porphyrin molecules in nanoscale devices is to possess the ability to control the electrical pathways across them. Herein, we demonstrate a method to build single-molecule wires with metalloporphyrins via their central metal ion by chemically modifying both an STM tip and surface electrodes with pyridin-4-yl-methanethiol, a molecule that has strong affinity for coordination with the metal ion of the porphyrin. The new flat configuration resulted in single-molecule junctions of exceedingly high lifetime and of conductance 3 orders of magnitude larger than that obtained previously for similar porphyrin molecules but wired from either end of the porphyrin ring. This work presents a new concept of building highly efficient single-molecule electrical contacts by exploiting metal coordination chemistry.

Darwish, Nadim., Aragonès, A. C., Darwish, T., Ciampi, S., Díez-Pérez, I., (2014). Multi-responsive photo- and chemo-electrical single-molecule switches Nano Letters 14, (12), 7064-7070

Incorporating molecular switches as the active components in nanoscale electrical devices represents a current challenge in molecular electronics. It demands key requirements that need to be simultaneously addressed including fast responses to external stimuli and stable attachment of the molecules to the electrodes while mimicking the operation of conventional electronic components. Here, we report a single-molecule switching device that responds electrically to optical and chemical stimuli. A light pointer or a chemical signal can rapidly and reversibly induce the isomerization of bifunctional spiropyran derivatives in the bulk reservoir and, consequently, switch the electrical conductivity of the single-molecule device between a low and a high level. The spiropyran derivatives employed are chemically functionalized such that they can respond in fast but practical time scales. The unique multistimuli response and the synthetic versatility to control the switching schemes of this single-molecule device suggest spiropyran derivatives as key candidates for molecular circuitry.

Keywords: Molecular Electronics, Multi-Responsive Molecular Switches, Photo- and Chemo-Switches Spiropyran, Single-Molecule Conductance, STM Break-Junction, Electronic equipment, Isomerization, Molecular electronics, Photochromism, Electrical conductivity, Electronic component, Molecular switches, Single-molecule conductances, Single-molecule devices, Spiropyran derivatives, Spiropyrans, STM Break-Junction, Molecules

Pittolo, Silvia, Gómez-Santacana, Xavier, Eckelt, Kay, Rovira, Xavier, Dalton, James, Goudet, Cyril, Pin, Jean-Philippe, Llobet, Artur, Giraldo, Jesús, Llebaria, Amadeu, Gorostiza, Pau, (2014). An allosteric modulator to control endogenous G protein-coupled receptors with light Nature Chemical Biology 10, (10), 813-815

Controlling drug activity with light offers the possibility of enhancing pharmacological selectivity with spatial and temporal regulation, thus enabling highly localized therapeutic effects and precise dosing patterns. Here we report on the development and characterization of what is to our knowledge the first photoswitchable allosteric modulator of a G protein–coupled receptor. Alloswitch-1 is selective for the metabotropic glutamate receptor ​mGlu5 and enables the optical control of endogenous ​mGlu5 receptors.

Esteban-Ferrer, Daniel, Edwards, Martin Andrew, Fumagalli, Laura, Juarez, Antonio, Gomila, Gabriel, (2014). Electric polarization properties of single bacteria measured with electrostatic force microscopy ACS Nano 8, (10), 9843–9849

We quantified the electrical polarization properties of single bacterial cells using electrostatic force microscopy. We found that the effective dielectric constant, εr,eff , for the four bacterial types investigated (Salmonella Typhimurium, Escherchia coli, Lactobacilus sakei and Listeria innocua) is around 3-5 under dry air conditions. Under ambient humidity, it increases to εr,eff~6-7 for the Gram-negative bacterial types (S. Typhimurium and E. coli) and to εr,eff~15-20 for the Gram-positive ones (L. sakei and L. innocua). We show that the measured effective dielectric constants can be consistently interpreted in terms of the electric polarization properties of the biochemical components of the bacterial cell compartments and of their hydration state. These results demonstrate the potential of electrical studies of single bacterial cells. We quantified the electrical polarization properties of single bacterial cells using electrostatic force microscopy. We found that the effective dielectric constant, εr,eff , for the four bacterial types investigated (Salmonella Typhimurium, Escherchia coli, Lactobacilus sakei and Listeria innocua) is around 3-5 under dry air conditions. Under ambient humidity, it increases to εr,eff~6-7 for the Gram-negative bacterial types (S. Typhimurium and E. coli) and to εr,eff~15-20 for the Gram-positive ones (L. sakei and L. innocua). We show that the measured effective dielectric constants can be consistently interpreted in terms of the electric polarization properties of the biochemical components of the bacterial cell compartments and of their hydration state. These results demonstrate the potential of electrical studies of single bacterial cells.

Izquierdo-Serra, M., Gascón-Moya, Marta, Hirtz, Jan J., Pittolo, Silvia, Poskanzer, Kira E., Ferrer, Eric, Alibés, Ramon, Busque, Felix, Yuste, Rafael, Hernando, Jordi, Gorostiza, Pau, (2014). Two-photon neuronal and astrocytic stimulation of azobenzene-based photoswitches Journal of the American Chemical Society American Chemical Society 136, (24), 8693-8701

Synthetic photochromic compounds can be designed to control a variety of proteins and their biochemical functions in living cells, but the high spatiotemporal precision and tissue penetration of two-photon stimulation has never been investigated in these molecules. Here we demonstrate two-photon excitation of azobenzene-based protein switches, and versatile strategies to enhance their photochemical responses. This enables new applications to control the activation of neurons and astrocytes with cellular and subcellular resolution.

Bribián, A., Nocentini, S., Llorens, F., Gil, V., Mire, E., Reginensi, D., Yoshida, Y., Mann, F., Del Río, J. A., (2014). Sema3E/PlexinD1 regulates the migration of hem-derived Cajal-Retzius cells in developing cerebral cortex Nature Communications 5, 4265

During the development of the cerebral cortex, Cajal-Retzius (CR) cells settle in the preplate and coordinate the precise growth of the neocortex. Indeed, CR cells migrate tangentially from specific proliferative regions of the telencephalon (for example, the cortical hem (CH)) to populate the entire cortical surface. This is a very finely tuned process regulated by an emerging number of factors that has been sequentially revealed in recent years. However, the putative participation of one of the major families of axon guidance molecules in this process, the Semaphorins, was not explored. Here we show that Semaphorin-3E (Sema3E) is a natural negative regulator of the migration of PlexinD1-positive CR cells originating in the CH. Our results also indicate that Sema3E/PlexinD1 signalling controls the motogenic potential of CR cells in vitro and in vivo. Indeed, absence of Sema3E/PlexinD1 signalling increased the migratory properties of CR cells. This modulation implies negative effects on CXCL12/CXCR4 signalling and increased ADF/Cofilin activity.

Cuervo, A., Dans, P. D., Carrascosa, J. L., Orozco, M., Gomila, G., Fumagalli, L., (2014). Direct measurement of the dielectric polarization properties of DNA Proceedings of the National Academy of Sciences of the United States of America 111, (35), E3624-E3630

The electric polarizability of DNA, represented by the dielectric constant, is a key intrinsic property that modulates DNA interaction with effector proteins. Surprisingly, it has so far remained unknown owing to the lack of experimental tools able to access it. Here, we experimentally resolved it by detecting the ultraweak polarization forces of DNA inside single T7 bacteriophages particles using electrostatic force microscopy. In contrast to the common assumption of low-polarizable behavior like proteins (εr ∼ 2-4), we found that the DNA dielectric constant is ∼8, considerably higher than the value of ∼3 found for capsid proteins. State-of-the-art molecular dynamic simulations confirm the experimental findings, which result in sensibly decreased DNA interaction free energy than normally predicted by Poisson-Boltzmann methods. Our findings reveal a property at the basis of DNA structure and functions that is needed for realistic theoretical descriptions, and illustrate the synergetic power of scanning probe microscopy and theoretical computation techniques.

Keywords: Atomic force microscopy, Atomistic simulations, DNA packaging, DNA-ligand binding, Poisson-Boltzmann equation, capsid protein, DNA, double stranded DNA, amino acid composition, article, atomic force microscopy, bacteriophage, bacteriophage T7, dielectric constant, dipole, DNA binding, DNA packaging, DNA structure, electron microscopy, ligand binding, nonhuman, polarization, priority journal, protein analysis, protein DNA interaction, scanning probe microscopy, static electricity, virion, virus capsid, virus particle, atomic force microscopy, atomistic simulations, DNA packaging, DNA-ligand binding, Poisson-Boltzmann equation, Bacteriophage T7, Capsid, Cations, Dielectric Spectroscopy, DNA, DNA, Viral, DNA-Binding Proteins, Electrochemical Techniques, Ligands, Microscopy, Atomic Force, Models, Chemical, Nuclear Proteins

Bautista-Barrufet, A., López-Gallego, F., Rojas-Cervellera, V., Rovira, C., Pericàs, M. A., Guisán, J. M., Gorostiza, P., (2014). Optical control of enzyme enantioselectivity in solid phase ACS Catalysis 4, (3), 1004-1009

A lipase was immobilized on transparent agarose microspheres and genetically engineered to specifically anchor photochromic molecules into its catalytic site. Several combinations of azobenzene and spiropyran groups were conjugated to cysteines introduced at different positions near the active center. Light modulated the catalytic properties of the resulting solid bioconjugates, and such modulation depended on both the nature of the photochromic compound and the anchoring position. Covalent anchoring of azobenzene derivatives to the residue 295 of the lipase 2 from Bacillus thermocathenolatus triggered lipase preference for the S isomer under UV light, whereas visible light promoted preference for the R isomer. Molecular dynamics simulations indicate that conjugating photochromic compounds into the catalytic cavity allows manipulating the steric hindrance and binding energy of the substrates, leading to an enantioselective molecular fit in certain cases. Using this approach, we report for the first time the control of enzyme properties using light in the solid phase. A lipase was immobilized on transparent agarose microspheres and genetically engineered to specifically anchor photochromic molecules into its catalytic site. Several combinations of azobenzene and spiropyran groups were conjugated to cysteines introduced at different positions near the active center. Light modulated the catalytic properties of the resulting solid bioconjugates, and such modulation depended on both the nature of the photochromic compound and the anchoring position. Covalent anchoring of azobenzene derivatives to the residue 295 of the lipase 2 from Bacillus thermocathenolatus triggered lipase preference for the S isomer under UV light, whereas visible light promoted preference for the R isomer. Molecular dynamics simulations indicate that conjugating photochromic compounds into the catalytic cavity allows manipulating the steric hindrance and binding energy of the substrates, leading to an enantioselective molecular fit in certain cases. Using this approach, we report for the first time the control of enzyme properties using light in the solid phase.

Movellan, J., Urbán, P., Moles, E., de la Fuente, J. M., Sierra, T., Serrano, J. L., Fernàndez-Busquets, X., (2014). Amphiphilic dendritic derivatives as nanocarriers for the targeted delivery of antimalarial drugs Biomaterials 35, (27), 7940-7950

It can be foreseen that in a future scenario of malaria eradication, a varied armamentarium will be required, including strategies for the targeted administration of antimalarial compounds. The development of nanovectors capable of encapsulating drugs and of delivering them to Plasmodium-infected cells with high specificity and efficacy and at an affordable cost is of particular interest. With this objective, dendritic derivatives based on 2,2-bis(hydroxymethyl)propionic acid (bis-MPA) and Pluronic® polymers have been herein explored. Four different dendritic derivatives have been tested for their capacity to encapsulate the antimalarial drugs chloroquine (CQ) and primaquine (PQ), their specific targeting to Plasmodium-infected red blood cells (pRBCs), and their antimalarial activity invitro against the human pathogen Plasmodium falciparum and invivo against the rodent malaria species Plasmodium yoelii. The results obtained have allowed the identification of two dendritic derivatives exhibiting specific targeting to pRBCs vs. non-infected RBCs, which reduce the invitro IC50 of CQ and PQ by ca. 3- and 4-fold down to 4.0nm and 1.1μm, respectively. This work on the application of dendritic derivatives to antimalarial targeted drug delivery opens the way for the use of this new type of chemicals in future malaria eradication programs.

Keywords: Antimalarial targeted drug delivery, Dendrimers, Malaria, Nanomedicine, Plasmodium, Polymeric nanoparticles

Álvarez, Z., Castaño, O., Castells, A. A., Mateos-Timoneda, M. A., Planell, J. A., Engel, E., Alcántara, S., (2014). Neurogenesis and vascularization of the damaged brain using a lactate-releasing biomimetic scaffold Biomaterials 35, (17), 4769-4781

Regenerative medicine strategies to promote recovery following traumatic brain injuries are currently focused on the use of biomaterials as delivery systems for cells or bioactive molecules. This study shows that cell-free biomimetic scaffolds consisting of radially aligned electrospun poly-l/dl lactic acid (PLA70/30) nanofibers release l-lactate and reproduce the 3D organization and supportive function of radial glia embryonic neural stem cells. The topology of PLA nanofibers supports neuronal migration while l-lactate released during PLA degradation acts as an alternative fuel for neurons and is required for progenitor maintenance. Radial scaffolds implanted into cavities made in the postnatal mouse brain fostered complete implant vascularization, sustained neurogenesis, and allowed the long-term survival and integration of the newly generated neurons. Our results suggest that the endogenous central nervous system is capable of regeneration through the invivo dedifferentiation induced by biophysical and metabolic cues, with no need for exogenous cells, growth factors, or genetic manipulation.

Keywords: Lactate, Nanofibers, Neural stem cells, Neurogenesis, Regeneration, Vascularization

Artés, Juan M., López-Martínez, Montserrat, Díez-Pérez, Ismael, Sanz, Fausto, Gorostiza, Pau, (2014). Conductance switching in single wired redox proteins Small 10, (13), 2537-2541

Switching events in the current flowing through individual redox proteins, (azurin) spontaneously wired between two electrodes, are studied using an electrochemical scanning tunneling microscope (ECSTM). These switching events in the current–time trace are characterized using conductance histograms, and reflect the intrinsic redox thermodynamic dispersion in the azurin population. This conductance switching may pose limitations to miniaturizing redox protein-based devices.

Keywords: Bioelectronics, Protein transistors, Molecular junctions, Switches, STM

Urbán, P., Valle-Delgado, J. J., Mauro, N., Marques, J., Manfredi, A., Rottmann, M., Ranucci, E., Ferruti, P., Fernàndez-Busquets, X., (2014). Use of poly(amidoamine) drug conjugates for the delivery of antimalarials to Journal of Controlled Release 177, (1), 84-95

Current malaria therapeutics demands strategies able to selectively deliver drugs to Plasmodium-infected red blood cells (pRBCs) in order to limit the appearance of parasite resistance. Here, the poly(amidoamines) AGMA1 and ISA23 have been explored for the delivery of antimalarial drugs to pRBCs. AGMA1 has antimalarial activity per se as shown by its inhibition of the in vitro growth of Plasmodium falciparum, with an IC50 of 13.7 μM. Fluorescence-assisted cell sorting data and confocal fluorescence microscopy and transmission electron microscopy images indicate that both polymers exhibit preferential binding to and internalization into pRBCs versus RBCs, and subcellular targeting to the parasite itself in widely diverging species such as P. falciparum and Plasmodium yoelii, infecting humans and mice, respectively. AGMA1 and ISA23 polymers with hydrodynamic radii around 7 nm show a high loading capacity for the antimalarial drugs primaquine and chloroquine, with the final conjugate containing from 14.2% to 32.9% (w/w) active principle. Intraperitoneal administration of 0.8 mg/kg chloroquine as either AGMA1 or ISA23 salts cured P. yoelii-infected mice, whereas control animals treated with twice as much free drug did not survive. These polymers combining into a single chemical structure drug carrying capacity, low unspecific toxicity, high biodegradability and selective internalization into pRBCs, but not in healthy erythrocytes for human and rodent malarias, may be regarded as promising candidates deserving to enter the antimalarial therapeutic arena.

Keywords: Malaria, Nanomedicine, Plasmodium, Polyamidoamines, Polymer-drug carriers, Targeted drug delivery

Palacios-Padrós, A., Altomare, M., Tighineanu, A., Kirchgeorg, R., Shrestha, N. K., Díez-Pérez, I., Caballero-Briones, F., Sanz, F., Schmuki, P., (2014). Growth of ordered anodic SnO2 nanochannel layers and their use for H2 gas sensing Journal of Materials Chemistry A 2, (4), 915-920

In the current work, we present a new self-organizing anodization approach of metallic Sn layers to obtain vertically aligned tin oxide nanochannel structures. For this, we use a sulphide-containing electrolyte and a set of optimized anodizing parameters. The resulting high aspect ratio nanochannel morphologies can be converted into crystalline SnO2 by high temperature annealing and show highly promising H2 sensing properties. We show that these anodic layers can operate at relatively low temperatures (∼80 °C), detecting concentrations as low as 9 ppm, and with extremely fast response and recovery times. This excellent gas-sensing performance is ascribed to the advanced structure, characterized by a crack-free, straight and top-open nanochannel geometry.

Caló, A., Reguera, D., Oncins, G., Persuy, M. A., Sanz, G., Lobasso, S., Corcelli, A., Pajot-Augy, E., Gomila, G., (2014). Force measurements on natural membrane nanovesicles reveal a composition-independent, high Young's modulus Nanoscale 6, (4), 2275-2285

Mechanical properties of nano-sized vesicles made up of natural membranes are crucial to the development of stable, biocompatible nanocontainers with enhanced functional, recognition and sensing capabilities. Here we measure and compare the mechanical properties of plasma and inner membrane nanovesicles ∼80 nm in diameter obtained from disrupted yeast Saccharomyces cerevisiae cells. We provide evidence of a highly deformable behaviour for these vesicles, able to support repeated wall-to-wall compressions without irreversible deformations, accompanied by a noticeably high Young's modulus (∼300 MPa) compared to that obtained for reconstituted artificial liposomes of similar size and approaching that of some virus particles. Surprisingly enough, the results are approximately similar for plasma and inner membrane nanovesicles, in spite of their different lipid compositions, especially on what concerns the ergosterol content. These results point towards an important structural role of membrane proteins in the mechanical response of natural membrane vesicles and open the perspective to their potential use as robust nanocontainers for bioapplications.

Lagunas, A., Garcia, A., Artés, J. M., Vida, Y., Collado, D., Pérez-Inestrosa, E., Gorostiza, P., Claros, S., Andrades, J. A., Samitier, J., (2014). Large-scale dendrimer-based uneven nanopatterns for the study of local arginine-glycine-aspartic acid (RGD) density effects on cell adhesion Nano Research 7, (3), 399-409

Cell adhesion processes are governed by the nanoscale arrangement of the extracellular matrix (ECM), being more affected by local rather than global concentrations of cell adhesive ligands. In many cell-based studies, grafting of dendrimers on surfaces has shown the benefits of the local increase in concentration provided by the dendritic configuration, although the lack of any reported surface characterization has limited any direct correlation between dendrimer disposition and cell response. In order to establish a proper correlation, some control over dendrimer surface deposition is desirable. Here, dendrimer nanopatterning has been employed to address arginine-glycine-aspartic acid (RGD) density effects on cell adhesion. Nanopatterned surfaces were fully characterized by atomic force microscopy (AFM), scanning tunneling microscopy (STM) and X-ray photoelectron spectroscopy (XPS), showing that tunable distributions of cell adhesive ligands on the surface are obtained as a function of the initial dendrimer bulk concentration. Cell experiments showed a clear correlation with dendrimer surface layout: Substrates presenting regions of high local ligand density resulted in a higher percentage of adhered cells and a higher degree of maturation of focal adhesions (FAs). Therefore, dendrimer nanopatterning is presented as a suitable and controlled approach to address the effect of local ligand density on cell response. Moreover, due to the easy modification of dendrimer peripheral groups, dendrimer nanopatterning can be further extended to other ECM ligands having density effects on cells.

Keywords: Arginine-glycine-aspartic acid, Atomic force microscopy, Cell adhesion, Dendrimer, Focal adhesions, Scanning tunneling microscopy

Castaño, O., Sachot, N., Xuriguera, E., Engel, E., Planell, J. A., Park, J. H., Jin, G. Z., Kim, T. H., Kim, J. H., Kim, H. W., (2014). Angiogenesis in bone regeneration: Tailored calcium release in hybrid fibrous scaffolds ACS Applied Materials and Interfaces 6, (10), 7512-7522

In bone regeneration, silicon-based calcium phosphate glasses (Bioglasses) have been widely used since the 1970s. However, they dissolve very slowly because of their high amount of Si (SiO2 > 45%). Recently, our group has found that calcium ions released by the degradation of glasses in which the job of silicon is done by just 5% of TiO2 are effective angiogenic promoters, because of their stimulation of a cell-membrane calcium sensing receptor (CaSR). Based on this, other focused tests on angiogenesis have found that Bioglasses also have the potential to be angiogenic promoters even with high contents of silicon (80%); however, their slow degradation is still a problem, as the levels of silicon cannot be decreased any lower than 45%. In this work, we propose a new generation of hybrid organically modified glasses, ormoglasses, that enable the levels of silicon to be reduced, therefore speeding up the degradation process. Using electrospinning as a faithful way to mimic the extracellular matrix (ECM), we successfully produced hybrid fibrous mats with three different contents of Si (40, 52, and 70%), and thus three different calcium ion release rates, using an ormoglass–polycaprolactone blend approach. These mats offered a good platform to evaluate different calcium release rates as osteogenic promoters in an in vivo subcutaneous environment. Complementary data were collected to complement Ca2+ release analysis, such as stiffness evaluation by AFM,

Keywords: Biological materials, Blood vessels, Calcium, Electrospinning, Glass, Hybrid materials, Silicon oxides, Sol-gel process, Sol-gels, Angiogenesis, Biological characterization, Calcium phosphate glass, Calcium-sensing receptors, Degradation process, Extracellular matrices, Organic/inorganic hybrid materials, ormoglasses, Silicon

Pérez-Madrigal, M. M., Giannotti, M. I., Del Valle, L. J., Franco, L., Armelin, E., Puiggalí, J., Sanz, F., Alemán, C., (2014). Thermoplastic polyurethane:polythiophene nanomembranes for biomedical and biotechnological applications ACS Applied Materials and Interfaces 6, (12), 9719-9732

Nanomembranes have been prepared by spin-coating mixtures of a polythiophene (P3TMA) derivative and thermoplastic polyurethane (TPU) using 20:80, 40:60, and 60:40 TPU:P3TMA weight ratios. After structural, topographical, electrochemical, and thermal characterization, properties typically related with biomedical applications have been investigated: swelling, resistance to both hydrolytic and enzymatic degradation, biocompatibility, and adsorption of type I collagen, which is an extra cellular matrix protein that binds fibronectin favoring cell adhesion processes. The swelling ability and the hydrolytic and enzymatic degradability of TPU:P3TMA membranes increases with the concentration of P3TMA. Moreover, the degradation of the blends is considerably promoted by the presence of enzymes in the hydrolytic medium, TPU:P3TMA blends behaving as biodegradable materials. On the other hand, TPU:P3TMA nanomembranes behave as bioactive platforms stimulating cell adhesion and, especially, cell viability. Type I collagen adsorption largely depends on the substrate employed to support the nanomembrane, whereas it is practically independent of the chemical nature of the polymeric material used to fabricate the nanomembrane. However, detailed microscopy study of the morphology and topography of adsorbed collagen evidence the formation of different organizations, which range from fibrils to pseudoregular honeycomb networks depending on the composition of the nanomembrane that is in contact with the protein. Scaffolds made of electroactive TPU:P3TMA nanomembranes are potential candidates for tissue engineering biomedical applications.

Keywords: Bioactive platform, Biodegradable blend, Collaged adsorption, Scaffolds, Tissue engineering, Ultrathin films

Navarro, S., Moleiro, V., Molina-Estevez, F. J., Lozano, M. L., Chinchon, R., Almarza, E., Quintana-Bustamante, O., Mostoslavsky, G., Maetzig, T., Galla, M., Heinz, N., Schiedlmeier, B., Torres, Y., Modlich, U., Samper, E., Río, P., Segovia, J. C., Raya, A., Güenechea, G., Izpisua-Belmonte, J. C., Bueren, J. A., (2014). Generation of iPSCs from genetically corrected Brca2 hypomorphic cells: Implications in cell reprogramming and stem cell therapy Stem Cells 32, (2), 436-446

Fanconi anemia (FA) is a complex genetic disease associated with a defective DNA repair pathway known as the FA pathway. In contrast to many other FA proteins, BRCA2 participates downstream in this pathway and has a critical role in homology-directed recombination (HDR). In our current studies, we have observed an extremely low reprogramming efficiency in cells with a hypomorphic mutation in Brca2 (Brca2Δ27/Δ27), that was associated with increased apoptosis and defective generation of nuclear RAD51 foci during the reprogramming process. Gene complementation facilitated the generation of Brca2Δ27/Δ27 induced pluripotent stem cells (iPSCs) with a disease-free FA phenotype. Karyotype analyses and comparative genome hybridization arrays of complemented Brca2Δ27/Δ27 iPSCs showed, however, the presence of different genetic alterations in these cells, most of which were not evident in their parental Brca2 Δ27/Δ27 mouse embryonic fibroblasts. Gene-corrected Brca2Δ27/Δ27 iPSCs could be differentiated in vitro toward the hematopoietic lineage, although with a more limited efficacy than WT iPSCs or mouse embryonic stem cells, and did not engraft in irradiated Brca2Δ27/Δ27 recipients. Our results are consistent with previous studies proposing that HDR is critical for cell reprogramming and demonstrate that reprogramming defects characteristic of Brca2 mutant cells can be efficiently overcome by gene complementation. Finally, based on analysis of the phenotype, genetic stability, and hematopoietic differentiation potential of gene-corrected Brca2Δ27/Δ27 iPSCs, achievements and limitations in the application of current reprogramming approaches in hematopoietic stem cell therapy are also discussed.

Keywords: Bone marrow aplasia, Cellular therapy, Fanconi anemia, Gene therapy, Hematopoietic stem cells, Induced pluripotent stem cells

Tahirbegi, I. B., Mir, M., Schostek, S., Schurr, M., Samitier, J., (2014). In vivo ischemia monitoring array for endoscopic surgery Biosensors and Bioelectronics 61, 124-130

An array with all-solid-state, potentiometric, miniaturized sensors for pH and potassium was developed to be introduced into the stomach or other sectors of the digestive tract by means of flexible endoscopy. These sensors perform continuous and simultaneous measurement of extracellular pH and potassium. This detection seeks to sense ischemia in the gastric mucosa inside the stomach, an event indicative of local microvascular perfusion and tissue oxygenation status. Our array is proposed as a medical tool to identify the occurrence of the ischemia after gastrointestinal or gastroesophageal anastomosis. The stability and feasibility of the miniaturized working and reference electrodes integrated in the array were studied under in vitro conditions, and the behavior of the potassium and pH ion-selective membranes were optimized to work under acidic gastric conditions with high concentrations of HCl. The array was tested in vivo in pigs to measure the ischemia produced by clamping the blood flow into the stomach. Our results indicate that ischemic and reperfusion states can be sensed in vivo and that information on tissue damage can be collected by this sensor array. The device described here provides a miniaturized, inexpensive, and mass producible sensor array for detecting local ischemia caused by unfavorable anastomotic perfusion and will thus contribute to preventing anastomotic leakage and failure caused by tissue necrosis.

Keywords: Endoscopy, Surgery, Tissue, Gastric anastomosis, Gastric conditions, Ion selective sensors, Ischemia, pH detection, Reference electrodes, Simultaneous measurement, Tissue oxygenation, Sensors

Paytubi, S., Aznar, S., Madrid, C., Balsalobre, C., Dillon, S. C., Dorman, C. J., Juárez, A., (2014). A novel role for antibiotic resistance plasmids in facilitating Salmonella adaptation to non-host environments Environmental Microbiology 16, (4), 950-962

It is believed that the main role of plasmids that encode multiple antibiotic resistance is to confer their hosts the ability to survive in the presence of antimicrobial compounds. In the pathogenic bacterium Salmonella, plasmids of the incompatibility group HI1 account for a significant proportion of antibiotic resistance phenotypes. In this work, we show that plasmid R27 has a strong impact on the global transcriptome of SalmonellaTyphimurium strain SL1344 when cells grow at low temperature and enter the stationary phase. Down-regulated genes include pathogenicity islands, anaerobic respiration and metabolism determinants. Up-regulated genes include factors involved in the response to nutrient starvation, antimicrobial resistance, iron metabolism and the heat shock response. Accordingly, cells harbouring R27 are more resistant to heat shock than plasmid-free cells. The use of a different IncHI1 plasmid, pHCM1, provided evidence that these plasmids facilitate adaptation of Salmonella to environmental conditions outside their host(s). This is consistent with the fact that conjugative transfer of IncHI1 plasmids only occurs at low temperature. A significant number of the R27-dependent alterations in gene expression could be correlated with expression of a plasmid-encoded orthologue of the global modulator H-NS, which is up-regulated when cells grow at low temperature.

Marques, J., Moles, E., Urbán, P., Prohens, R., Busquets, M. A., Sevrin, C., Grandfils, C., Fernàndez-Busquets, X., (2014). Application of heparin as a dual agent with antimalarial and liposome targeting activities toward Plasmodium-infected red blood cells Nanomedicine: Nanotechnology, Biology, and Medicine 10, (8), 1719-1728

Heparin had been demonstrated to have antimalarial activity and specific binding affinity for Plasmodium-infected red blood cells (pRBCs) vs. non-infected erythrocytes. Here we have explored if both properties could be joined into a drug delivery strategy where heparin would have a dual role as antimalarial and as a targeting element of drug-loaded nanoparticles. Confocal fluorescence and transmission electron microscopy data show that after 30. min of being added to living pRBCs fluorescein-labeled heparin colocalizes with the intracellular parasites. Heparin electrostatically adsorbed onto positively charged liposomes containing the cationic lipid 1,2-dioleoyl-3-trimethylammonium-propane and loaded with the antimalarial drug primaquine was capable of increasing three-fold the activity of encapsulated drug in Plasmodium falciparum cultures. At concentrations below those inducing anticoagulation of mouse blood in vivo, parasiticidal activity was found to be the additive result of the separate activities of free heparin as antimalarial and of liposome-bound heparin as targeting element for encapsulated primaquine. From the Clinical Editor: Malaria remains an enormous global public health concern. In this study, a novel functionalized heparin formulation used as drug delivery agent for primaquine was demonstrated to result in threefold increased drug activity in cell cultures, and in a murine model it was able to provide these benefits in concentrations below what would be required for anticoagulation. Further studies are needed determine if this approach is applicable in the human disease as well.

Keywords: Heparin, Liposomes, Malaria, Plasmodium, Targeted drug delivery, Heparin, Malaria, Plasmodium, Red blood cell, Targeted drug delivery, Liposomes, 1,2 dioleoyl 3 trimethylammoniopropane, fluorescein, heparin, liposome, nanoparticle, primaquine, adsorption, animal experiment, anticoagulation, antimalarial activity, Article, binding affinity, confocal microscopy, controlled study, drug targeting, encapsulation, erythrocyte, female, fluorescence microscopy, human, human cell, in vivo study, liposomal delivery, mouse, nonhuman, Plasmodium falciparum, transmission electron microscopy

Rigat, L., Elizalde-Torrent, A., Bernabeu, M., De Niz, M., Martin-Jaular, L., Fernandez-Becerra, C., Homs-Corbera, A., Samitier, J., Del Portillo, H. A., (2014). A functional microengineered model of the human splenon-on-a-chip Lab on a Chip 14, (10), 1715-1724

The spleen is a secondary lymphoid organ specialized in the filtration of senescent, damaged, or infected red blood cells. This unique filtering capacity is largely due to blood microcirculation through filtration beds of the splenic red pulp in an open-slow microcirculation compartment where the hematocrit increases, facilitating the recognition and destruction of unhealthy red blood cells by specialized macrophages. Moreover, in sinusal spleens such as those of humans, blood in the open-slow microcirculation compartment has a unidirectional passage through interendothelial slits before reaching the venous system. This further physical constraint represents a second stringent test for erythrocytes ensuring elimination of those cells lacking deformability. With the aim of replicating the filtering function of the spleen on a chip, we have designed a novel microengineered device mimicking the hydrodynamic forces and the physical properties of the splenon, the minimal functional unit of the red pulp able to maintain filtering functions. In this biomimetic platform, we have evaluated the mechanical and physiological responses of the splenon using human red blood cells and malaria-infected cells. This novel device should facilitate future functional studies of the spleen in relation to malaria and other hematological disorders.

Van Heirstraeten, L., Spang, P., Schwind, C., Drese, K. S., Ritzi-Lehnert, M., Nieto, B., Camps, M., Landgraf, B., Guasch, F., Corbera, A. H., Samitier, J., Goossens, H., Malhotra-Kumar, S., Roeser, T., (2014). Integrated DNA and RNA extraction and purification on an automated microfluidic cassette from bacterial and viral pathogens causing community-acquired lower respiratory tract infections Lab on a Chip 14, (9), 1519-1526

In this paper, we describe the development of an automated sample preparation procedure for etiological agents of community-acquired lower respiratory tract infections (CA-LRTI). The consecutive assay steps, including sample re-suspension, pre-treatment, lysis, nucleic acid purification, and concentration, were integrated into a microfluidic lab-on-a-chip (LOC) cassette that is operated hands-free by a demonstrator setup, providing fluidic and valve actuation. The performance of the assay was evaluated on viral and Gram-positive and Gram-negative bacterial broth cultures previously sampled using a nasopharyngeal swab. Sample preparation on the microfluidic cassette resulted in higher or similar concentrations of pure bacterial DNA or viral RNA compared to manual benchtop experiments. The miniaturization and integration of the complete sample preparation procedure, to extract purified nucleic acids from real samples of CA-LRTI pathogens to, and above, lab quality and efficiency, represent important steps towards its application in a point-of-care test (POCT) for rapid diagnosis of CA-LRTI.

Tejeda-Montes, E., Smith, K. H., Rebollo, E., Gómez, R., Alonso, M., Rodriguez-Cabello, J. C., Engel, E., Mata, Alvaro., (2014). Bioactive membranes for bone regeneration applications: Effect of physical and biomolecular signals on mesenchymal stem cell behavior Acta Biomaterialia 10, (1), 134-141

This study focuses on the in vitro characterization of bioactive elastin-like recombinamer (ELR) membranes for bone regeneration applications. Four bioactive ELRs exhibiting epitopes designed to promote mesenchymal stem cell adhesion (RGDS), endothelial cell adhesion (REDV), mineralization (HAP), and both cell adhesion and mineralization (HAP-RGDS) were synthesized using standard recombinant protein techniques. The materials were then used to fabricate ELR membranes incorporating a variety of topographical micropatterns including channels, holes and posts. Primary rat mesenchymal stem cells (rMSCs) were cultured on the different membranes and the effects of biomolecular and physical signals on cell adhesion, morphology, proliferation, and differentiation were evaluated. All results were analyzed using a custom-made MATLAB program for high throughput image analysis. Effects on cell morphology were mostly dependent on surface topography, while cell proliferation and cell differentiation were largely dependent on the biomolecular signaling from the ELR membranes. In particular, osteogenic differentiation (evaluated by staining for the osteoblastic marker osterix) was significantly enhanced on cells cultured on HAP membranes. Remarkably, cells growing on membranes containing the HAP sequence in non-osteogenic differentiation media exhibited significant up-regulation of the osteogenic marker as early as day 5, while those growing on fibronectin-coated glass in osteogenic differentiation media did not. These results are part of our ongoing effort to develop an optimized molecularly designed periosteal graft.

Vila, O. F., Martino, M. M., Nebuloni, L., Kuhn, G., Pérez-Amodio, S., Müller, R., Hubbell, J. A., Rubio, N., Blanco, J., (2014). Bioluminescent and micro-computed tomography imaging of bone repair induced by fibrin-binding growth factors Acta Biomaterialia 10, (10), 4377-4389

In this work we have evaluated the capacity of bone morphogenetic protein-2 (BMP-2) and fibrin-binding platelet-derived growth factor-BB (PDGF-BB) to support cell growth and induce bone regeneration using two different imaging technologies to improve the understanding of structural and organizational processes participating in tissue repair. Human mesenchymal stem cells from adipose tissue (hAMSCs) expressing two luciferase genes, one under the control of the cytomegalovirus (CMV) promoter and the other under the control of a tissue-specific promoter (osteocalcin or platelet endothelial cell adhesion molecule), were seeded in fibrin matrices containing BMP-2 and fibrin-binding PDGF-BB, and further implanted intramuscularly or in a mouse calvarial defect. Then, cell growth and bone regeneration were monitored by bioluminescence imaging (BLI) to analyze the evolution of target gene expression, indicative of cell differentiation towards the osteoblastic and endothelial lineages. Non-invasive imaging was supplemented with micro-computed tomography (μCT) to evaluate bone regeneration and high-resolution μCT of vascular casts. Results from BLI showed hAMSC growth during the first week in all cases, followed by a rapid decrease in cell number; as well as an increment of osteocalcin but not PECAM-1 expression 3 weeks after implantation. Results from μCT show that the delivery of BMP-2 and PDGF-BB by fibrin induced the formation of more bone and improves vascularization, resulting in more abundant and thicker vessels, in comparison with controls. Although the inclusion of hAMSCs in the fibrin matrices made no significant difference in any of these parameters, there was a significant increment in the connectivity of the vascular network in defects treated with hAMSCs.

Keywords: Angiogenesis, Bioluminescence imaging, Bone regeneration, Fibrin, Mesenchymal stem cell

González-Vázquez, A., Planell, J. A., Engel, E., (2014). Extracellular calcium and CaSR drive osteoinduction in mesenchymal stromal cells Acta Biomaterialia 10, (6), 2824–2833

Bone is the main store of calcium and progenitor cells in the body. During the resorption process, the local calcium concentration reaches 8-40 mM, and the surrounding cells are exposed to these fluctuations in calcium. This stimulus is a signal that is detected through the calcium sensing receptor (CaSR), which modulates chemotactic and proliferative G protein-dependent signaling pathways. The objective of the present work is to evaluate the roles of extracellular calcium ([Ca2+]o) and the CaSR in osteoinduction. Rat bone marrow mesenchymal stromal cells (rBMSCs) were stimulated with 10 mM of Ca2+. Several experiments were conducted to demonstrate the effect of [Ca2+]o on chemotaxis, proliferation and differentiation on the osteoblastic lineage. It was found that [Ca2+]o induces rBMSCs to migrate and proliferate in a concentration-dependent manner. Real-time polymerase chain reaction and immunofluorescence also revealed that 10 mM Ca2+ stimulates overexpression of osteogenic markers in rBMSCs, including alkaline phosphatase (ALP), bone sialoprotein, collagen Ia1 and osteocalcin. Functional assays determining ALP activity and mineralization tests both corroborate the increased expression of these markers in rBMSCs stimulated with Ca2+. Moreover, CaSR blockage inhibited the cellular response to stimulation with high concentrations of [Ca2+]o, revealing that the CaSR is a key modulator of these cellular responses.

Keywords: Calcium sensing receptor (CaSR), Extracellular calcium, Mesenchymal stromal cells (MSCs), Osteoinduction, Regenerative medicine

Andreu, I., Luque, T., Sancho, A., Pelacho, B., Iglesias-García, O., Melo, E., Farré, R., Prósper, F., Elizalde, M. R., Navajas, D., (2014). Heterogeneous micromechanical properties of the extracellular matrix in healthy and infarcted hearts Acta Biomaterialia 10, (7), 3235-3242

Infarcted hearts are macroscopically stiffer than healthy organs. Nevertheless, although cell behavior is mediated by the physical features of the cell niche, the intrinsic micromechanical properties of healthy and infarcted heart extracellular matrix (ECM) remain poorly characterized. Using atomic force microscopy, we studied ECM micromechanics of different histological regions of the left ventricle wall of healthy and infarcted mice. Hearts excised from healthy (n = 8) and infarcted mice (n = 8) were decellularized with sodium dodecyl sulfate and cut into 12 μm thick slices. Healthy ventricular ECM revealed marked mechanical heterogeneity across histological regions of the ventricular wall with the effective Young's modulus ranging from 30.2 ± 2.8 to 74.5 ± 8.7 kPa in collagen- and elastin-rich regions of the myocardium, respectively. Infarcted ECM showed a predominant collagen composition and was 3-fold stiffer than collagen-rich regions of the healthy myocardium. ECM of both healthy and infarcted hearts exhibited a solid-like viscoelastic behavior that conforms to two power-law rheology. Knowledge of intrinsic micromechanical properties of the ECM at the length scale at which cells sense their environment will provide further insight into the cell-scaffold interplay in healthy and infarcted hearts.

Keywords: Atomic force microscopy, Extracellular matrix, Heart scaffold, Nanoindentation, Viscoelasticity

Almeida, C. R., Serra, T., Oliveira, M. I., Planell, J. A., Barbosa, M. A., Navarro, M., (2014). Impact of 3-D printed PLA- and chitosan-based scaffolds on human monocyte/macrophage responses: Unraveling the effect of 3-D structures on inflammation Acta Biomaterialia 10, (2), 613-622

Recent studies have pointed towards a decisive role of inflammation in triggering tissue repair and regeneration, while at the same time it is accepted that an exacerbated inflammatory response may lead to rejection of an implant. Within this context, understanding and having the capacity to regulate the inflammatory response elicited by 3-D scaffolds aimed for tissue regeneration is crucial. This work reports on the analysis of the cytokine profile of human monocytes/macrophages in contact with biodegradable 3-D scaffolds with different surface properties, architecture and controlled pore geometry, fabricated by 3-D printing technology. Fabrication processes were optimized to create four different 3-D platforms based on polylactic acid (PLA), PLA/calcium phosphate glass or chitosan. Cytokine secretion and cell morphology of human peripheral blood monocytes allowed to differentiate on the different matrices were analyzed. While all scaffolds supported monocyte/macrophage adhesion and stimulated cytokine production, striking differences between PLA-based and chitosan scaffolds were found, with chitosan eliciting increased secretion of tumor necrosis factor (TNF)-α, while PLA-based scaffolds induced higher production of interleukin (IL)-6, IL-12/23 and IL-10. Even though the material itself induced the biggest differences, the scaffold geometry also impacted on TNF-α and IL-12/23 production, with chitosan scaffolds having larger pores and wider angles leading to a higher secretion of these pro-inflammatory cytokines. These findings strengthen the appropriateness of these 3-D platforms to study modulation of macrophage responses by specific parameters (chemistry, topography, scaffold architecture).

Arcos, D., Boccaccini, A. R., Bohner, M., Díez-Pérez, A., Epple, M., Gómez-Barrena, E., Herrera, A., Planell, J. A., Rodríguez-Mañas, L., Vallet-Regí, M., (2014). The relevance of biomaterials to the prevention and treatment of osteoporosis Acta Biomaterialia 10, (5), 1793-1805

Osteoporosis is a worldwide disease with a very high prevalence in humans older than 50. The main clinical consequences are bone fractures, which often lead to patient disability or even death. A number of commercial biomaterials are currently used to treat osteoporotic bone fractures, but most of these have not been specifically designed for that purpose. Many drug- or cell-loaded biomaterials have been proposed in research laboratories, but very few have received approval for commercial use. In order to analyze this scenario and propose alternatives to overcome it, the Spanish and European Network of Excellence for the Prevention and Treatment of Osteoporotic Fractures, "Ageing", was created. This network integrates three communities, e.g. clinicians, materials scientists and industrial advisors, tackling the same problem from three different points of view. Keeping in mind the premise "living longer, living better", this commentary is the result of the thoughts, proposals and conclusions obtained after one year working in the framework of this network.

Keywords: Ageing, Biomaterials, Bone, Osteoporosis

Prieto-Simón, B., Samitier, J., (2014). "signal off" aptasensor based on enzyme inhibition induced by conformational switch Analytical Chemistry 86, (3), 1437-1444

A novel sensing strategy for electrochemical aptamer-based sensors is presented. Nucleic acid aptamers are considered alternatives to antibodies. However, some of their intrinsic properties, such as that they can undergo conformational changes during the binding of the target, can be used to design novel sensing strategies. Unlike other electrochemical "signal off" aptamer-based sensors, we report a strategy based on enzymatic inhibition. Our approach shows the feasibility to detect small molecules based on the aptamer conformational change induced by the target that leads to the inhibition of the enzyme used as a label. Additionally, we prove the ability to regenerate the function of the aptasensor by simply applying a short potential pulse. As a proof-of-concept, the widely used aptamer for ochratoxin A (OTA) has been selected as a model. After self-assembling short oligonucleotides onto a gold electrode, complementary to the 3′ end of the aptamer, hybridization of the aptamer takes place. To investigate the mechanism induced by the OTA-binding, surface plasmon resonance assays were performed, which confirmed the conformational switch of the aptamer rather than the aptamer displacement by dehybridization from the DNA-modified sensor surface. The electrochemical sensor can successfully detect OTA in wine at the limits stipulated by the European Commission. Given its sensitivity, rapid and easy detection, and regeneration, it can be envisaged as screening tool for OTA detection. Moreover, this sensing strategy has the potential to be applied to other aptamer-based biochemical assays for the detection of small molecules in the fields of food safety, environmental monitoring, and medical diagnostics.

Pérez-Madrigal, M. M., Giannotti, M. I., Armelin, E., Sanz, F., Alemán, C., (2014). Electronic, electric and electrochemical properties of bioactive nanomembranes made of polythiophene:thermoplastic polyurethane Polymer Chemistry 5, (4), 1248-1257

The electronic, electric and electrochemical response of nanomembranes prepared by using spin-coating mixtures of a semiconducting polythiophene derivative (P3TMA) and thermoplastic polyurethane (TPU) has been exhaustively examined by UV-vis spectroscopy, conductive AFM, current/voltage measurements and cyclic voltammetry. TPU:P3TMA nanomembranes were reported to be good substrates for applications related to tissue engineering, acting as a cellular matrix for cell adhesion and proliferation. Both TPU:P3TMA and P3TMA nanomembranes show semiconductor behavior with very similar band gap energy (2.35 and 2.32 eV, respectively), which has been attributed to the influence of the fabrication process on the π-conjugation length and packing interactions of P3TMA chains. This behavior is in opposition to the observations in THF solution, which indicates that the band gap energy of P3TMA is clearly lower than that of the mixture, independently of the concentration. The current and conductivity values determined for the nanomembranes, which range from 0.43 to 1.85 pA and from 2.23 × 10-5 to 5.19 × 10-6 S cm-1, respectively, evidence inhomogeneity in the P3TMA-rich domains. This has been associated with the irregular distribution of the doped chains and the presence of insulating TPU chains. The voltammetric response of TPU:P3TMA and P3TMA nanomembranes is similar in terms of ability to store charge and electrochemical stability. Overall results indicate that TPU:P3TMA nanomembranes are potential candidates for the fabrication of bioactive substrates able to promote cell regeneration through electrical or electrochemical stimulation.

Llorens, F., Ferrer, I., del Río, J. A., (2014). Gene expression resulting from PrPC ablation and PrPC overexpression in murine and cellular models Molecular Neurobiology 49, (1), 413-423

The cellular prion protein (PrPC) plays a key role in prion diseases when it converts to the pathogenic form scrapie prion protein. Increasing knowledge of its participation in prion infection contrasts with the elusive and controversial data regarding its physiological role probably related to its pleiotropy, cell-specific functions, and cellular-specific milieu. Multiple approaches have been made to the increasing understanding of the molecular mechanisms and cellular functions modulated by PrPC at the transcriptomic and proteomic levels. Gene expression analyses have been made in several mouse and cellular models with regulated expression of PrPC resulting in PrPC ablation or PrPC overexpression. These analyses support previous functional data and have yielded clues about new potential functions. However, experiments on animal models have shown moderate and varied results which are difficult to interpret. Moreover, studies in cell cultures correlate little with in vivo counterparts. Yet, both animal and cell models have provided some insights on how to proceed in the future by using more refined methods and selected functional experiments.

Seira, O., del Río, J. A., (2014). Glycogen synthase kinase 3 beta (GSK3 Molecular Neurobiology 49, (2), 931-944

Gaining a basic understanding of the inhibitory molecules and the intracellular signaling involved in axon development and repulsion after neural lesions is of clear biomedical interest. In recent years, numerous studies have described new molecules and intracellular mechanisms that impair axonal outgrowth after injury. In this scenario, the role of glycogen synthase kinase 3 beta (GSK3β) in the axonal responses that occur after central nervous system (CNS) lesions began to be elucidated. GSK3β function in the nervous tissue is associated with neural development, neuron polarization, and, more recently, neurodegeneration. In fact, GSK3β has been considered as a putative therapeutic target for promoting functional recovery in injured or degenerative CNS. In this review, we summarize current understanding of the role of GSK3β during neuronal development and regeneration. In particular, we discuss GSK3β activity levels and their possible impact on cytoskeleton dynamics during both processes.

Dalmases, M., Torres, M., Márquez-Kisinousky, L., Almendros, I., Planas, A. M., Embid, C., Martínez-Garcia, M. A., Navajas, D., Farré, R., Montserrat, J. M., (2014). Brain tissue hypoxia and oxidative stress induced by obstructive apneas is different in young and aged rats Sleep 37, (7), 1249-1256

Study Objectives: To test the hypotheses that brain oxygen partial pressure (PtO2) in response to obstructive apneas changes with age and that it might lead to different levels of cerebral tissue oxidative stress. Design: Prospective controlled animal study. Setting: University laboratory. Participants: Sixty-four male Wistar rats: 32 young (3 mo old) and 32 aged (18 mo). Interventions: Protocol 1: Twenty-four animals were subjected to obstructive apneas (50 apneas/h, lasting 15 sec each) or to sham procedure for 50 min. Protocol 2: Forty rats were subjected to obstructive apneas or sham procedure for 4 h. Measurements and Results: Protocol 1: Real-time PtO2 measurements were performed using a fast-response oxygen microelectrode. During successive apneas cerebral cortex PtO2 presented a different pattern in the two age groups; there was a fast increase in young rats, whereas it remained without significant changes between the beginning and the end of the protocol in the aged group. Protocol 2: Brain oxidative stress assessed by lipid peroxidation increased after apneas in young rats (1.34 ± 0.17 nmol/mg of protein) compared to old ones (0.63 ± 0.03 nmol/mg), where a higher expression of antioxidant enzymes was observed. Conclusions: The results suggest that brain oxidative stress in aged rats is lower than in young rats in response to recurrent apneas, mimicking obstructive sleep apnea. This could be due to the different PtO2 response observed between age groups and the increased antioxidant expression in aged rats.

Keywords: Aging, Animal model, Obstructive apnea, Oxidative stress, Tissue oxygenation, antioxidant, glutathione disulfide, aged, animal experiment, animal model, animal tissue, apnea, arterial oxygen saturation, article, brain cortex, brain oxygen tension, brain tissue, controlled study, groups by age, hypoxia, lipid peroxidation, male, nonhuman, oxidative stress, pressure, priority journal, rat

Fonollosa, Jordi, Vergara, Alexander, Huerta, R., Marco, Santiago, (2014). Estimation of the limit of detection using information theory measures Analytica Chimica Acta 810, 1-9

Abstract Definitions of the limit of detection (LOD) based on the probability of false positive and/or false negative errors have been proposed over the past years. Although such definitions are straightforward and valid for any kind of analytical system, proposed methodologies to estimate the LOD are usually simplified to signals with Gaussian noise. Additionally, there is a general misconception that two systems with the same LOD provide the same amount of information on the source regardless of the prior probability of presenting a blank/analyte sample. Based upon an analogy between an analytical system and a binary communication channel, in this paper we show that the amount of information that can be extracted from an analytical system depends on the probability of presenting the two different possible states. We propose a new definition of LOD utilizing information theory tools that deals with noise of any kind and allows the introduction of prior knowledge easily. Unlike most traditional LOD estimation approaches, the proposed definition is based on the amount of information that the chemical instrumentation system provides on the chemical information source. Our findings indicate that the benchmark of analytical systems based on the ability to provide information about the presence/absence of the analyte (our proposed approach) is a more general and proper framework, while converging to the usual values when dealing with Gaussian noise.

Keywords: Limit of detection, Information theory, Mutual information, Heteroscedasticity, False positive/negative errors, Gas discrimination and quantification

Bahamonde, María Isabel, Taura, Jaume, Paoletta, Silvia, Gakh, Andrei Alexandrovich, Chakraborty, Saibal, Hernando, Jordi, Fernández-Dueñas, Víctor, Jacobson, Kenneth A., Gorostiza, Pau, Ciruela, Francisco, (2014). Photomodulation of G protein-coupled adenosine receptors by a novel light-switchable ligand Bioconjugate Chemistry American Chemical Society 25, (10), 1847-1854

The adenosinergic system operates through G protein-coupled adenosine receptors, which have become promising therapeutic targets for a wide range of pathological conditions. However, the ubiquity of adenosine receptors and the eventual lack of selectivity of adenosine-based drugs have frequently diminished their therapeutic potential. Accordingly, here we aimed to develop a new generation of light-switchable adenosine receptor ligands that change their intrinsic activity upon irradiation, thus allowing the spatiotemporal control of receptor functioning (i.e. receptor activation/inactivation dependent on location and timing). Therefore, we synthesized an orthosteric, photoisomerizable and non-selective adenosine receptor agonist, nucleoside derivative MRS5543 containing an aryl diazo linkage on the N6 substituent, which in the dark (relaxed isomer) behaved as a full adenosine A3 receptor (A3R) and partial adenosine A2A receptor (A2AR) agonist. Conversely, upon photoisomerization with blue light (460 nm), it remained a full A3R agonist but became an A2AR antagonist. Interestingly, molecular modeling suggested that structural differences encountered within the third extracellular loop of each receptor could modulate the intrinsic, receptor subtype-dependent, activity. Overall, the development of adenosine receptor ligands with photoswitchable activity expands the pharmacological toolbox in support of research and possibly opens new pharmacotherapeutic opportunities. The adenosinergic system operates through G protein-coupled adenosine receptors, which have become promising therapeutic targets for a wide range of pathological conditions. However, the ubiquity of adenosine receptors and the eventual lack of selectivity of adenosine-based drugs have frequently diminished their therapeutic potential. Accordingly, here we aimed to develop a new generation of light-switchable adenosine receptor ligands that change their intrinsic activity upon irradiation, thus allowing the spatiotemporal control of receptor functioning (i.e. receptor activation/inactivation dependent on location and timing). Therefore, we synthesized an orthosteric, photoisomerizable and non-selective adenosine receptor agonist, nucleoside derivative MRS5543 containing an aryl diazo linkage on the N6 substituent, which in the dark (relaxed isomer) behaved as a full adenosine A3 receptor (A3R) and partial adenosine A2A receptor (A2AR) agonist. Conversely, upon photoisomerization with blue light (460 nm), it remained a full A3R agonist but became an A2AR antagonist. Interestingly, molecular modeling suggested that structural differences encountered within the third extracellular loop of each receptor could modulate the intrinsic, receptor subtype-dependent, activity. Overall, the development of adenosine receptor ligands with photoswitchable activity expands the pharmacological toolbox in support of research and possibly opens new pharmacotherapeutic opportunities.

Artés, J. M., López-Martínez, M., Díez-Pérez, I., Sanz, F., Gorostiza, P., (2014). Nanoscale charge transfer in redox proteins and DNA: Towards biomolecular electronics Electrochimica Acta 140, 83-95

Understanding how charges move through and between biomolecules is a fundamental question that constitutes the basis for many biological processes. On the other hand, it has potential applications in the design of sensors based on biomolecules and single molecule devices. In this review we introduce the study of the electron transfer (ET) process in biomolecules, providing an overview of the fundamental theory behind it and the different experimental approaches. The ET in proteins is introduced by reviewing a complete electronic characterization of a redox protein (azurin) using electrochemical scanning tunnelling microscopy (ECSTM). The ET process in DNA is overviewed and results from different experimental approaches are discussed. Finally, future directions in the study of the ET process in biomolecules are introduced as well as examples of possible technological applications.

Keywords: Bioelectrochemistry, Biomolecular electronics, Charge transfer, Nanobiodevice, Single-molecule junction

Melo, E., Garreta, E., Luque, T., Cortiella, J., Nichols, J., Navajas, D., Farré, R., (2014). Effects of the decellularization method on the local stiffness of acellular lungs Tissue Engineering Part C: Methods 20, (5), 412-422

Lung bioengineering, a novel approach to obtain organs potentially available for transplantation, is based on decellularizing donor lungs and seeding natural scaffolds with stem cells. Various physicochemical protocols have been used to decellularize lungs, and their performance has been evaluated in terms of efficient decellularization and matrix preservation. No data are available, however, on the effect of different decellularization procedures on the local stiffness of the acellular lung. This information is important since stem cells directly sense the rigidity of the local site they are engrafting to during recellularization, and it has been shown that substrate stiffness modulates cell fate into different phenotypes. The aim of this study was to assess the effects of the decellularization procedure on the inhomogeneous local stiffness of the acellular lung on five different sites: alveolar septa, alveolar junctions, pleura, and vessels' tunica intima and tunica adventitia. Local matrix stiffness was measured by computing Young's modulus with atomic force microscopy after decellularizing the lungs of 36 healthy rats (Sprague-Dawley, male, 250–300 g) with four different protocols with/without perfusion through the lung circulatory system and using two different detergents (sodium dodecyl sulfate [SDS] and 3-[(3-cholamidopropyl) dimethylammonio]-1-propanesulfonate [CHAPS]). The local stiffness of the acellular lung matrix significantly depended on the site within the matrix (p<0.001), ranging from ∼15 kPa at the alveolar septum to ∼60 kPa at the tunica intima. Acellular lung stiffness (p=0.003) depended significantly, albeit modestly, on the decellularization process. Whereas perfusion did not induce any significant differences in stiffness, the use of CHAPS resulted in a ∼35% reduction compared with SDS, the influence of the detergent being more important in the tunica intima. In conclusion, lung matrix stiffness is considerably inhomogeneous, and conventional decellularization procedures do not result in substantially different local stiffness in the acellular lung.

Gibert, M., Juárez, A., Zechner, E. L., Madrid, C., Balsalobre, C., (2014). TrhR, TrhY and HtdA, a novel regulatory circuit that modulates conjugation of the IncHI plasmids Molecular Microbiology 94, (5), 1146-1161

Bacterial conjugation promotes horizontal gene transfer and, consequently, the acquisition of new capabilities such as resistance to antimicrobial compounds and virulence related traits. Conjugative plasmids belonging to the incompatibility group HI are associated with multidrug resistance in Gram-negative pathogens. IncHI plasmid conjugation is thermodependent and all transfer-related genes are encoded in six operons (tra operons). Using R27, the prototype of IncHI1 plasmids, we reported that the plasmid-encoded factor HtdA represses four of the six tra operons. Moreover, our results indicated that other R27 factors were required for appropriate expression of the tra genes. In this report, using R27 libraries and random mutagenesis assays, two genes - trhR and trhY- have been identified as essential for the transcriptional expression of four tra operons and, accordingly, for the R27 conjugation. TrhR and TrhY are required simultaneously and their stimulatory activity is counteracted by HtdA. Functional and physical interactions between TrhR, TrhY and HtdA suggest that they form a three-element regulatory circuit that controls conjugation of IncHI plasmids. Expression studies suggest that H-NS represses conjugation at high temperature by repressing trhR expression. Remarkably, we show that this regulatory circuit is highly conserved among the IncHI plasmids.

Levato, R., Visser, J., Planell, J. A., Engel, E., Malda, J., Mateos-Timoneda, M. A., (2014). Biofabrication of tissue constructs by 3D bioprinting of cell-laden microcarriers Biofabrication 6, (3), 035020 (12)

Bioprinting allows the fabrication of living constructs with custom-made architectures by spatially controlled deposition of multiple bioinks. This is important for the generation of tissue, such as osteochondral tissue, which displays a zonal composition in the cartilage domain supported by the underlying subchondral bone. Challenges in fabricating functional grafts of clinically relevant size include the incorporation of cues to guide specific cell differentiation and the generation of sufficient cells, which is hard to obtain with conventional cell culture techniques. A novel strategy to address these demands is to combine bioprinting with microcarrier technology. This technology allows for the extensive expansion of cells, while they form multi-cellular aggregates, and their phenotype can be controlled. In this work, living constructs were fabricated via bioprinting of cell-laden microcarriers. Mesenchymal stromal cell (MSC)-laden polylactic acid microcarriers, obtained via static culture or spinner flask expansion, were encapsulated in gelatin methacrylamide-gellan gum bioinks, and the printability of the composite material was studied. This bioprinting approach allowed for the fabrication of constructs with high cell concentration and viability. Microcarrier encapsulation improved the compressive modulus of the hydrogel constructs, facilitated cell adhesion, and supported osteogenic differentiation and bone matrix deposition by MSCs. Bilayered osteochondral models were fabricated using microcarrier-laden bioink for the bone compartment. These findings underscore the potential of this new microcarrier-based biofabrication approach for bone and osteochondral constructs.

Paaijmans, Krijn, Fernàndez-Busquets, Xavier, (2014). Antimalarial drug delivery to the mosquito: an option worth exploring? Future Microbiology 9, (5), 579-582

Malandrino, Andrea, Lacroix, Damien, Hellmich, Christian, Ito, Keita, Ferguson, Stephen J., Noailly, J., (2014). The role of endplate poromechanical properties on the nutrient availability in the intervertebral disc Osteoarthritis and Cartilage 22, (7), 1053-1060

Objective To investigate the relevance of the human vertebral endplate poromechanics on the fluid and metabolic transport from and to the intervertebral disc (IVD) based on educated estimations of the poromechanical parameter values of the bony endplate (BEP). Methods 50 micro-models of different BEP samples were generated from

Keywords: Bony endplate, Spine mechanobiology, Intervertebral disc metabolites, Hydraulic Permeability, Bone Porosity, Poromechanics

Salvagni, E., Berguig, G., Engel, E., Rodriguez-Cabello, J. C., Coullerez, G., Textor, M., Planell, J. A., Gil, F. J., Aparicio, C., (2014). A bioactive elastin-like recombinamer reduces unspecific protein adsorption and enhances cell response on titanium surfaces Colloids and Surfaces B: Biointerfaces 114, 225-233

We present the immobilization on synthetic substrates of elastin-like recombinamers (ELR) that combine a bioactive motif for cell adhesion with protein antifouling properties. Physical adsorption of the recombinamers and covalent-grafting through organosilane chemistry were investigated. The biochemically-modified surfaces were thoroughly characterized and tested for protein absorption in serum by fluorescence-labelling, XPS, Ellipsometry, and OWLS. The ELR were successfully grafted and stable, even upon mechanical stresses; being the covalent bonding favourable over physical adsorption. The coated metal surfaces exhibited excellent reduction of serum protein adsorption (9ng/cm2) compared to the bare metal surface (310ng/cm2). Non-specific protein adsorption may mask the introduced bioactive motifs; therefore, the bioactivated surfaces should display serum-protein antifouling properties. Finally, improved hMSCs response was assessed on the bioactivated substrates. In summary, the coatings simultaneously displayed anti-fouling and bioactive properties. These studies investigated key factors to enhance tissue material interactions fundamental for the design of bioactive devices and future biomedical applications.

Manca, M. L., Castangia, I., Matricardi, P., Lampis, S., Fernàndez-Busquets, X., Fadda, A. M., Manconi, M., (2014). Molecular arrangements and interconnected bilayer formation induced by alcohol or polyalcohol in phospholipid vesicles Colloids and Surfaces B: Biointerfaces 117, 360-367

A self-assembled hybrid phospholipid vesicular system containing various penetration enhancers - ethanol, Transcutol and propylenglycol - was prepared and characterized. The effects of the different alcohol or polyalcohols structure and their concentration on the features of the assembled vesicles were evaluated using a combination of different techniques, including cryo-transmission electron microscopy, laser light scattering, differential scanning calorimetry, small- and wide-angle X-ray scattering and rheological analysis. These techniques allow explaining the structural rearrangements of the bilayer assembly due to the alcohol or polyalcohol addition. X-ray scattering studies showed that such addition at the highest concentration (20%) allowed structure modification to oligolamellar vesicles and a bilayer transition to interdigitated phase. Rheological studies confirmed the importance of alcohol or polyalcohol in the structuring dispersions probably due to a partial tilting of phosphatidylcholine acyl chains forming interdigitated and interconnected bilayer vesicles.

Keywords: (Poly)alcohols, Cryo-TEM, DSC, Liposomes, Penetration Enhancer containing Vesicle (PEVs), Rheology, SAXS

Dols-Perez, A., Fumagalli, L., Gomila, G., (2014). Structural and nanomechanical effects of cholesterol in binary and ternary spin-coated single lipid bilayers in dry conditions Colloids and Surfaces B: Biointerfaces 116, 295-302

We investigate the effects of Cholesterol (Chol) in the structural and nanomechanical properties of binary and ternary spin-coated single lipid bilayers made of Dioleoylphosphatidylcholine (DOPC) and Sphingomyelin (SM) in dry conditions. We show that for the DOPC/Chol bilayers, Chol induces an initial increase of the bilayer thickness, followed by decrease for concentrations above 30% Chol. The mechanical properties, instead, appear practically insensitive to the Chol content. For the SM/Chol bilayers we have observed both the thinning of the bilayer and the decrease of the force necessary to break it for Chol content above 40. mol%. In both binary mixtures phase separation is not observed. For ternary single bilayers of DOPC/SM/Chol, Chol induces phase segregation and the formation of domains resembling lipid rafts. The domains show a thickness and mechanical response clearly distinct from the surrounding phase and dependent on the relative Chol content. Based on the results obtained for the binary mixtures, DOPC- and SM-enriched domains can be identified. We highlight that many of the effects of Chol reported here for the dry multicomponent single lipid bilayers resemble closely those observed in hydrated bilayers, thus offering an additional insight into their properties.

Keywords: AFM, Air-stable lipid layer, Force spectroscopy, Lipid raft, Spin-coating

Ramos-Fernández, E., Tajes, M., Palomer, E., Ill-Raga, G., Bosch-Morató, M., Guivernau, B., Román-Dégano, I., Eraso-Pichot, A., Alcolea, D., Fortea, J., Nuñez, L., Paez, A., Alameda, F., Fernàndez-Busquets, X., Lleó, A., Elosúa, R., Boada, M., Valverde, M. A., Muñoz, F. J., (2014). Posttranslational nitro-glycative modifications of albumin in Alzheimer's disease: Implications in cytotoxicity and amyloid- Journal of Alzheimer's Disease 40, (3), 643-657

Glycation and nitrotyrosination are pathological posttranslational modifications that make proteins prone to losing their physiological properties. Since both modifications are increased in Alzheimer's disease (AD) due to amyloid-β peptide (Aβ) accumulation, we have studied their effect on albumin, the most abundant protein in cerebrospinal fluid and blood. Brain and plasmatic levels of glycated and nitrated albumin were significantly higher in AD patients than in controls. In vitro turbidometry and electron microscopy analyses demonstrated that glycation and nitrotyrosination promote changes in albumin structure and biochemical properties. Glycated albumin was more resistant to proteolysis and less uptake by hepatoma cells occurred. Glycated albumin also reduced the osmolarity expected for a solution containing native albumin. Both glycation and nitrotyrosination turned albumin cytotoxic in a cell type-dependent manner for cerebral and vascular cells. Finally, of particular relevance to AD, these modified albumins were significantly less effective in avoiding Aβ aggregation than native albumin. In summary, nitrotyrosination and especially glycation alter albumin structural and biochemical properties, and these modifications might contribute for the progression of AD.

Keywords: Albumin, Alzheimer's disease, amyloid, glycation, nitrotyrosination, oxidative stress

Comelles, J., Caballero, D., Voituriez, ., Hortigüela, V., Wollrab, V., Godeau, A. L., Samitier, J., Martínez, E., Riveline, D., (2014). Cells as active particles in asymmetric potentials: Motility under external gradients Biophysical Journal 107, (7), 1513-1522

Cell migration is a crucial event during development and in disease. Mechanical constraints and chemical gradients can contribute to the establishment of cell direction, but their respective roles remain poorly understood. Using a microfabricated topographical ratchet, we show that the nucleus dictates the direction of cell movement through mechanical guidance by its environment. We demonstrate that this direction can be tuned by combining the topographical ratchet with a biochemical gradient of fibronectin adhesion. We report competition and cooperation between the two external cues. We also quantitatively compare the measurements associated with the trajectory of a model that treats cells as fluctuating particles trapped in a periodic asymmetric potential. We show that the cell nucleus contributes to the strength of the trap, whereas cell protrusions guided by the adhesive gradients add a constant tunable bias to the direction of cell motion.

Urbán, P., Fernàndez-Busquets, X., (2014). Nanomedicine against malaria Current Medicinal Chemistry 21, (5), 605-629

Malaria is arguably one of the main medical concerns worldwide because of the numbers of people affected, the severity of the disease and the complexity of the life cycle of its causative agent, the protist Plasmodium sp. The clinical, social and economic burden of malaria has led for the last 100 years to several waves of serious efforts to reach its control and eventual eradication, without success to this day. With the advent of nanoscience, renewed hopes have appeared of finally obtaining the long sought-after magic bullet against malaria in the form of a nanovector for the targeted delivery of antimalarial drugs exclusively to Plasmodium-infected cells. Different types of encapsulating structure, targeting molecule, and antimalarial compound will be discussed for the assembly of Trojan horse nanocapsules capable of targeting with complete specificity diseased cells and of delivering inside them their antimalarial cargo with the objective of eliminating the parasite with a single dose. Nanotechnology can also be applied to the discovery of new antimalarials through single-molecule manipulation approaches for the identification of novel drugs targeting essential molecular components of the parasite. Finally, methods for the diagnosis of malaria can benefit from nanotools applied to the design of microfluidic-based devices for the accurate identification of the parasite's strain, its precise infective load, and the relative content of the different stages of its life cycle, whose knowledge is essential for the administration of adequate therapies. The benefits and drawbacks of these nanosystems will be considered in different possible scenarios, including cost-related issues that might be hampering the development of nanotechnology-based medicines against malaria with the dubious argument that they are too expensive to be used in developing areas.

Keywords: Dendrimers, Liposomes, Malaria diagnosis, Nanobiosensors, Nanoparticles, Plasmodium, Polymers, Targeted drug delivery

Tong, Z., Seira, O., Casas, C., Reginensi, D., Homs-Corbera, A., Samitier, J., Del Río, J. A., (2014). Engineering a functional neuro-muscular junction model in a chip RSC Advances 4, (97), 54788-54797

Healthy bi-directional intracellular transport along the axons between the somatodendritic and synaptic terminals is crucial to maintain the function and viability of neurons. When misbalanced, there is neuronal homeostasis failure that compromises its function and viability. In fact, several neurodegenerative diseases originate from misbalanced axonal transport and function. Thus numerous techniques have been developed to establish and maintain neuronal cultures in compartmented microfluidic devices to better understand these processes mimicking neuronal polarization. Although useful, these in vitro platforms do not allow for a full specific and temporal analysis in a completely monitored way. In this study, we have utilized a microfluidic system with large open cell culture reservoirs to precisely control neuronal microenvironments, capable of mimicking axon transport and synapse formation and to facilitate their analysis. We demonstrate using this lab-on-a-chip system for long-term motoneuron co-culture with C2C12-derived myotubes to mimic neuro-muscular junction (NMJ) formation. Furthermore, by integration with a calcium (Ca2+) imaging technique, we have proved the NMJ functionality in-chip through KCl-induced Ca2+ transient in connected myotubes. This platform can potentially become a useful tool as a straightforward, reproducible, and high-throughput in vitro model for basic NMJ research, and for high-throughput drug screening.

Oberhansl, S., Garcia, A., Lagunas, A., Prats-Alfonso, E., Hirtz, M., Albericio, F., Fuchs, H., Samitier, J., Martinez, E., (2014). Mesopattern of immobilised bone morphogenetic protein-2 created by microcontact printing and dip-pen nanolithography influence C2C12 cell fate RSC Advances 4, (100), 56809-56815

Dip-pen nanolithography and microcontact printing were used to fabricate mesopatterned substrates for cell differentiation experiments. A biotin-thiol was patterned on gold substrates and subsequently functionalised with streptavidin and biotinylated bone morphogenetic protein-2 (BMP-2). The feasibility of mesopatterned substrates containing immobilised BMP-2 was proven by obtaining similar differentiation outcomes compared to the growth factor in solution. Therefore, these substrates might be suitable for replacing conventional experiments with BMP-2 in solution.

Keywords: Bone morphogenetic protein-2, C2C12 cells, Dip-pen nanolithography, Micro contact printing

Garcia, A., Hortigüela, V., Lagunas, A., Cortina, C., Montserrat, N., Samitier, J., Martinez, E., (2014). Protein patterning on hydrogels by direct microcontact printing: application to cardiac differentiation RSC Advances 4, (55), 29120-29123

An extended microcontact printing technique to chemically pattern hydrogels is reported. The procedure employs standard polydimethylsiloxane stamps and requires minor pre-processing of the hydrogels by freeze-drying. Micropatterned Matrigel[trade mark sign] and gelatin hydrogels induce NIH-3T3 cell alignment and elongation. Furthermore, human embryonic stem cells cultured on fibronectin-patterned hydrogels display beating foci earlier than those cultured on non-patterned substrates.

Gramse, G., Kasper, M., Fumagalli, L., Gomila, G., Hinterdorfer, P., Kienberger, F., (2014). Calibrated complex impedance and permittivity measurements with scanning microwave microscopy Nanotechnology 25, (14), 145703 (8)

We present a procedure for calibrated complex impedance measurements and dielectric quantification with scanning microwave microscopy. The calibration procedure works in situ directly on the substrate with the specimen of interest and does not require any specific calibration sample. In the workflow tip-sample approach curves are used to extract calibrated complex impedance values and to convert measured S11 reflection signals into sample capacitance and resistance images. The dielectric constant of thin dielectric SiO2 films were determined from the capacitance images and approach curves using appropriate electrical tip-sample models and the εr value extracted at f = 19.81 GHz is in good agreement with the nominal value of εr ∼ 4. The capacitive and resistive material properties of a doped Si semiconductor sample were studied at different doping densities and tip-sample bias voltages. Following a simple serial model the capacitance-voltage spectroscopy curves are clearly related to the semiconductor depletion zone while the resistivity is rising with falling dopant density from 20 Ω to 20 kΩ. The proposed procedure of calibrated complex impedance measurements is simple and fast and the accuracy of the results is not affected by varying stray capacitances. It works for nanoscale samples on either fully dielectric or highly conductive substrates at frequencies between 1 and 20 GHz.

Keywords: Complex impedance, Dielectric constant, Nanotechnology: calibration, Resistivity, Scanning microwave microscopy

Gomila, G., Gramse, G., Fumagalli, L., (2014). Finite-size effects and analytical modeling of electrostatic force microscopy applied to dielectric films Nanotechnology 25, (25), 255702 (11)

A numerical analysis of the polarization force between a sharp conducting probe and a dielectric film of finite lateral dimensions on a metallic substrate is presented with the double objective of (i) determining the conditions under which the film can be approximated by a laterally infinite film and (ii) proposing an analytical model valid in this limit. We show that, for a given dielectric film, the critical diameter above which the film can be modeled as laterally infinite depends not only on the probe geometry, as expected, but mainly on the film thickness. In particular, for films with intermediate to large thicknesses (>100 nm), the critical diameter is nearly independent from the probe geometry and essentially depends on the film thickness and dielectric constant following a relatively simple phenomenological expression. For films that can be considered as laterally infinite, we propose a generalized analytical model valid in the thin-ultrathin limit (<20-50 nm) that reproduces the numerical calculations and the experimental data. Present results provide a general framework under which accurate quantification of electrostatic force microscopy measurements on dielectric films on metallic substrates can be achieved.

Keywords: Dielectric constant, Dielectric films, Electrostatic force microscopy, Quantification, Analytical models, Electric force microscopy, Electrostatic force, Film thickness, Permittivity, Probes, Substrates, Ultrathin films, Accurate quantifications, Electrostatic force microscopy, Finite size effect, Lateral dimension, Metallic substrate, Numerical calculation, Polarization forces, Quantification, Dielectric films

Zaffino, R. L., Mir, M., Samitier, J., (2014). Label-free detection of DNA hybridization and single point mutations in a nano-gap biosensor Nanotechnology 25, (10), 105501 (8)

We describe a conductance-based biosensor that exploits DNA-mediated long-range electron transport for the label-free and direct electrical detection of DNA hybridization. This biosensor platform comprises an array of vertical nano-gap biosensors made of gold and fabricated through standard photolithography combined with focused ion beam lithography. The nano-gap walls are covalently modified with short, anti-symmetric thiolated DNA probes, which are terminated by 19 bases complementary to both the ends of a target DNA strand. The nano-gaps are separated by a distance of 50nm, which was adjusted to fit the length of the DNA target plus the DNA probes. The hybridization of the target DNA closes the gap circuit in a switch on/off fashion, in such a way that it is readily detected by an increase in the current after nano-gap closure. The nano-biosensor shows high specificity in the discrimination of base-pair mismatching and does not require signal indicators or enhancing molecules. The design of the biosensor platform is applicable for multiplexed detection in a straightforward manner. The platform is well-suited to mass production, point-of-care diagnostics, and wide-scale DNA analysis applications.

Keywords: Biosensor, DNA hybridization, Labelfree, Nanogap, Single nucleotide mutation

Fumagalli, L., Edwards, Martin Andrew, Gomila, G., (2014). Quantitative electrostatic force microscopy with sharp silicon tips Nanotechnology 25, (49), 495701 (9)

Electrostatic force microscopy (EFM) probes are typically coated in either metal (radius ~ 30 nm) or highly-doped diamond (radius ~ 100 nm). Highly-doped silicon probes, which offer a sharpened and stable tip apex (radius ~ 1–10 nm) and are usually used only in standard atomic force microscopy, have been recently shown to allow enhanced lateral resolution in quantitative EFM and its application for dielectric constant measurement. Here we present the theoretical modelling required to quantitatively interpret the electrostatic force between these sharpened tips and samples. In contrast to a sphere-capped cone geometry used to describe metal/diamond-coated tips, modelling a sharpened silicon tip requires a geometry comprised of a cone with two different angles. Theoretical results are supported by experimental measurements of metallic substrates and ~10 nm radius dielectric nanoparticles. This work is equally applicable to EFM and other electrical scanned probe techniques, where it allows quantifying electrical properties of nanomaterials and 3D nano-objects with higher resolution.

Keywords: AFM, Dielectric constant, EFM, Dielectrics, Nanoparticles, Sharp tips

Fresco-Cala, B., Jimenez-Soto, J. M., Cardenas, S., Valcarcel, M., (2014). Single-walled carbon nanohorns immobilized on a microporous hollow polypropylene fiber as a sorbent for the extraction of volatile organic compounds from water samples Microchimica Acta 181, (9-10), 1117-1124

We have evaluated the behavior of single-walled carbon nanohorns as a sorbent for headspace and direct immersion (micro)solid phase extraction using volatile organic compounds (VOCs) as model analytes. The conical carbon nanohorns were first oxidized in order to increase their solubility in water and organic solvents. A microporous hollow polypropylene fiber served as a mechanical support that provides a high surface area for nanoparticle retention. The extraction unit was directly placed in the liquid sample or the headspace of an aqueous standard or a water sample to extract and preconcentrate the VOCs. The variables affecting extraction have been optimized. The VOCs were then identified and quantified by GC/MS. We conclude that direct immersion of the fiber is the most adequate method for the extraction of VOCs from both liquid samples and headspace. Detection limits range from 3.5 to 4.3 ng L-1 (excepted for toluene with 25 ng L-1), and the precision (expressed as relative standard deviation) is between 3.9 and 9.6 %. The method was applied to the determination of toluene, ethylbenzene, various xylene isomers and styrene in bottled, river and tap waters, and the respective average recoveries of spiked samples are 95.6, 98.2 and 86.0 %.

Keywords: (Micro)solid phase extraction, Nanotechnology, Oxidized single-walled carbon nanohorns, Volatiles compounds, Waters

Torrents, Eduard, (2014). Ribonucleotide reductases: Essential Enzymes for bacterial life Frontiers in Cellular and Infection Microbiology 4, 1-9

Ribonucleotide reductase (RNR) is a key enzyme that mediates the synthesis of deoxyribonucleotides, the DNA precursors, for DNA synthesis in every living cell. This enzyme converts ribonucleotides to deoxyribonucleotides, the building blocks for DNA replication, and repair. Clearly, RNR enzymes have contributed to the appearance of genetic material that exists today, being essential for the evolution of all organisms on Earth. The strict control of RNR activity and dNTP pool sizes is important, as pool imbalances increase mutation rates, replication anomalies, and genome instability. Thus, RNR activity should be finely regulated allosterically and at the transcriptional level. In this review we examine the distribution, the evolution, and the genetic regulation of bacterial RNRs. Moreover, this enzyme can be considered an ideal target for anti-proliferative compounds designed to inhibit cell replication in eukaryotic cells (cancer cells), parasites, viruses, and bacteria.

Keywords: Anaerobiosis, Transcription Factors, Evolution, Gene regulation, Ribonucleotide reductase, DNA Synthesis, NrdR,nrd

Gil, V., Nocentini, S., del Río, J. A., (2014). Historical first descriptions of Cajal-Retzius cells: From pioneer studies to current knowledge Frontiers in Neuroanatomy 8, Article 32 (9)

Santiago Ramón y Cajal developed a great body of scientific research during the last decade of 19th century, mainly between 1888 and 1892, when he published more than 30 manuscripts. The neuronal theory, the structure of dendrites and spines, and fine microscopic descriptions of numerous neural circuits are among these studies. In addition, numerous cell types (neuronal and glial) were described by Ramón y Cajal during this time using this "reazione nera" or Golgi method. Among these neurons were the special cells of the molecular layer of the neocortex. These cells were also termed Cajal cells or Retzius cells by other colleagues. Today these cells are known as Cajal-Retzius cells. From the earliest description, several biological aspects of these fascinating cells have been analyzed (e.g., cell morphology, physiological properties, origin and cellular fate, putative function during cortical development, etc). In this review we will summarize in a temporal basis the emerging knowledge concerning this cell population with specific attention the pioneer studies of Santiago Ramón y Cajal.

Keywords: Calretinin, Cortical hem, Neocortical development, Pioneer neurons, Radial glia, Reelin

Marco, Santiago, (2014). The need for external validation in machine olfaction: emphasis on health-related applications Analytical and Bioanalytical Chemistry Springer Berlin Heidelberg 406, (16), 3941-3956

Over the last two decades, electronic nose research has produced thousands of research works. Many of them were describing the ability of the e-nose technology to solve diverse applications in domains ranging from food technology to safety, security, or health. It is, in fact, in the biomedical field where e-nose technology is finding a research niche in the last years. Although few success stories exist, most described applications never found the road to industrial or clinical exploitation. Most described methodologies were not reliable and were plagued by numerous problems that prevented practical application beyond the lab. This work emphasizes the need of external validation in machine olfaction. I describe some statistical and methodological pitfalls of the e-nose practice and I give some best practice recommendations for researchers in the field.

Keywords: Chemical sensor arrays, Pattern recognition, Chemometrics, Electronic noses, Robustness, Signal and data processing

Caddeo, C., Díez-Sales, O., Pons, R., Fernàndez-Busquets, X., Fadda, A. M., Manconi, M., (2014). Topical anti-inflammatory potential of quercetin in lipid-based nanosystems: In vivo and in vitro evaluation Pharmaceutical Research 31, (4), 959-968

Purpose: To develop quercetin-loaded phospholipid vesicles, namely liposomes and PEVs (Penetration Enhancer-containing Vesicles), and to investigate their efficacy on TPA-induced skin inflammation. Methods: Vesicles were made from a mixture of phospholipids, quercetin and polyethylene glycol 400 (PEG), specifically added to increase drug solubility and penetration through the skin. Vesicle morphology and self-assembly were probed by Cryo-Transmission Electron Microscopy and Small/Wide Angle X-ray Scattering, as well as the main physico-chemical features by Light Scattering. The anti-inflammatory efficacy of quercetin nanovesicles was assessed in vivo on TPA-treated mice dorsal skin by the determination of two biomarkers: oedema formation and myeloperoxidase activity. The uptake of vesicles by 3T3 fibroblasts was also evaluated. Results: Small spherical vesicles were produced. Their size and lamellarity was strongly influenced by the PEG content (0%, 5%, 10% v/v). The administration of vesicular quercetin on TPA-inflamed skin resulted in an amelioration of the tissue damage, with a noticeable attenuation of oedema and leukocyte infiltration, especially using 5% PEG-PEVs, as also confirmed by confocal microscopy. In vitro studies disclosed a massive uptake and diffusion of PEVs in dermal fibroblasts. Conclusions: The proposed approach based on quercetin vesicular formulations may be of value in the treatment of inflammatory skin disorders.

Melo, E., Cárdenes, N., Garreta, E., Luque, T., Rojas, M., Navajas, D., Farré, R., (2014). Inhomogeneity of local stiffness in the extracellular matrix scaffold of fibrotic mouse lungs Journal of the Mechanical Behavior of Biomedical Materials 37, 186-195

Lung disease models are useful to study how cell engraftment, proliferation and differentiation are modulated in lung bioengineering. The aim of this work was to characterize the local stiffness of decellularized lungs in aged and fibrotic mice. Mice (2- and 24-month old; 14 of each) with lung fibrosis (N=20) and healthy controls (N=8) were euthanized after 11 days of intratracheal bleomycin (fibrosis) or saline (controls) infusion. The lungs were excised, decellularized by a conventional detergent-based (sodium-dodecyl sulfate) procedure and slices of the acellular lungs were prepared to measure the local stiffness by means of atomic force microscopy. The local stiffness of the different sites in acellular fibrotic lungs was very inhomogeneous within the lung and increased according to the degree of the structural fibrotic lesion. Local stiffness of the acellular lungs did not show statistically significant differences caused by age. The group of mice most affected by fibrosis exhibited local stiffness that were ~2-fold higher than in the control mice: from 27.2±1.64 to 64.8±7.1. kPa in the alveolar septa, from 56.6±4.6 to 99.9±11.7. kPa in the visceral pleura, from 41.1±8.0 to 105.2±13.6. kPa in the tunica adventitia, and from 79.3±7.2 to 146.6±28.8. kPa in the tunica intima. Since acellular lungs from mice with bleomycin-induced fibrosis present considerable micromechanical inhomogeneity, this model can be a useful tool to better investigate how different degrees of extracellular matrix lesion modulate cell fate in the process of organ bioengineering from decellularized lungs.

Keywords: Ageing, Atomic force microscopy, Decellularization, Lung fibrosis, Tissue engineering, Atomic force microscopy, Biological organs, Peptides, Sodium dodecyl sulfate, Sodium sulfate, Tissue engineering, Ageing, Decellularization, Extracellular matrices, Healthy controls, Inhomogeneities, Lung fibrosis, Micro-mechanical, Statistically significant difference, Mammals, bleomycin, adventitia, animal experiment, animal model, article, atomic force microscopy, bleomycin-induced pulmonary fibrosis, cell fate, controlled study, extracellular matrix, female, intima, lung alveolus, lung fibrosis, lung mechanics, mechanical probe, microenvironment, mouse, nonhuman, pleura, priority journal, rigidity, tissue engineering

Uriarte, J. J., Nonaka, P. N., Campillo, N., Palma, R. K., Melo, E., de Oliveira, L. V. F., Navajas, D., Farré, R., (2014). Mechanical properties of acellular mouse lungs after sterilization by gamma irradiation Journal of the Mechanical Behavior of Biomedical Materials 40, 168-177

Lung bioengineering using decellularized organ scaffolds is a potential alternative for lung transplantation. Clinical application will require donor scaffold sterilization. As gamma-irradiation is a conventional method for sterilizing tissue preparations for clinical application, the aim of this study was to evaluate the effects of lung scaffold sterilization by gamma irradiation on the mechanical properties of the acellular lung when subjected to the artificial ventilation maneuvers typical within bioreactors. Twenty-six mouse lungs were decellularized by a sodium dodecyl sulfate detergent protocol. Eight lungs were used as controls and 18 of them were submitted to a 31kGy gamma irradiation sterilization process (9 kept frozen in dry ice and 9 at room temperature). Mechanical properties of acellular lungs were measured before and after irradiation. Lung resistance (RL) and elastance (EL) were computed by linear regression fitting of recorded signals during mechanical ventilation (tracheal pressure, flow and volume). Static (Est) and dynamic (Edyn) elastances were obtained by the end-inspiratory occlusion method. After irradiation lungs presented higher values of resistance and elastance than before irradiation: RL increased by 41.1% (room temperature irradiation) and 32.8% (frozen irradiation) and EL increased by 41.8% (room temperature irradiation) and 31.8% (frozen irradiation). Similar increases were induced by irradiation in Est and Edyn. Scanning electron microscopy showed slight structural changes after irradiation, particularly those kept frozen. Sterilization by gamma irradiation at a conventional dose to ensure sterilization modifies acellular lung mechanics, with potential implications for lung bioengineering.

Keywords: Gamma irradiation, Lung bioengineering, Lung decellularization, Organ scaffold, Pulmonary mechanics, Decellularization, Gamma irradiation, Mouse lung, Pulmonary mechanics, dodecyl sulfate sodium, animal tissue, Article, artificial ventilation, bioengineering, bioreactor, compliance (physical), controlled study, freezing, gamma irradiation, lung, lung mechanics, lung resistance, male, mouse, nonhuman, room temperature, scanning electron microscopy, tissue scaffold, trachea pressure

Nonaka, P. N., Campillo, N., Uriarte, J. J., Garreta, E., Melo, E., de Oliveira, L. V. F., Navajas, D., Farré, R., (2014). Effects of freezing/thawing on the mechanical properties of decellularized lungs Journal of Biomedical Materials Research - Part A 102, (2), 413-419

Lung bioengineering based on decellularized organ scaffolds is a potential alternative for transplantation. Freezing/thawing, a usual procedure in organ decellularization and storage could modify the mechanical properties of the lung scaffold and reduce the performance of the bioengineered lung when subjected to the physiological inflation-deflation breathing cycles. The aim of this study was to determine the effects of repeated freezing/thawing on the mechanical properties of decellularized lungs in the physiological pressure-volume regime associated with normal ventilation. Fifteen mice lungs (C57BL/6) were decellularized using a conventional protocol not involving organ freezing and based on sodium dodecyl sulfate detergent. Subsequently, the mechanical properties of the acellular lungs were measured before and after subjecting them to three consecutive cycles of freezing/thawing. The resistance (RL) and elastance (EL) of the decellularized lungs were computed by linear regression fitting of the recorded signals (tracheal pressure, flow, and volume) during mechanical ventilation. RL was not significantly modified by freezing-thawing: from 0.88 ± 0.37 to 0.90 ± 0.38 cmH2O·s·mL-1 (mean ± SE). EL slightly increased from 64.4 ± 11.1 to 73.0 ± 16.3 cmH2O·mL-1 after the three freeze-thaw cycles (p = 0.0013). In conclusion, the freezing/thawing process that is commonly used for both organ decellularization and storage induces only minor changes in the ventilation mechanical properties of the organ scaffold.

Keywords: Elastance, Freezing/thawing, Lung bioengineering, Lung decellularization, Mechanical ventilation, Organ scaffold

Sanzana, E. S., Navarro, M., Ginebra, M. P., Planell, J. A., Ojeda, A. C., Montecinos, H. A., (2014). Role of porosity and pore architecture in the in vivo bone regeneration capacity of biodegradable glass scaffolds Journal of Biomedical Materials Research - Part A 102, (6), 1767-1773

The aim of this work is to shed light on the role of porosity and pore architecture in the in vivo bone regeneration capacity of biodegradable glass scaffolds. A calcium phosphate glass in the system P2O5-CaO-Na2O-TiO2 was foamed using two different porogens, namely albumen and hydrogen peroxide (H2O2); the resulting three-dimensional porous structures were characterized and implanted in New Zealand rabbits to study their in vivo behavior. Scaffolds foamed with albumen displayed a monomodal pore size distribution centered around 150 μm and a porosity of 82%, whereas scaffolds foamed with H2O2 showed lower porosity (37%), with larger elongated pores, and multimodal size distribution. After 12 weeks of implantation, histology results revealed a good osteointegration for both types of scaffolds. The quantitative morphometric analysis showed the substitution of the biomaterial by new bone in the case of glasses foamed with albumen. In contrast, bone neoformation and material resorption were significantly lower in the defects filled with the scaffolds foamed with H2O2. The results obtained in this study showed that both calcium phosphate glass scaffolds were osteoconductive, biocompatible, and biodegradable materials. However, differences in porosity, pore architecture, and microstructure led to substantially different in vivo response.

Keywords: Bone substitutes, Calcium phosphate glasses, in vivo, Scaffolds, Tissue engineering

Le Roux, D., Burger, P. B., Niemand, J., Grobler, A., Urbán, P., Fernàndez-Busquets, X., Barker, R. H., Serrano, A. E., I. Louw, A., Birkholtz, L. M., (2014). Novel S-adenosyl-L-methionine decarboxylase inhibitors as potent antiproliferative agents against intraerythrocytic International Journal for Parasitology: Drugs and Drug Resistance 4, (1), 28-36

S-adenosyl-l-methionine decarboxylase (AdoMetDC) in the polyamine biosynthesis pathway has been identified as a suitable drug target in Plasmodium falciparum parasites, which causes the most lethal form of malaria. Derivatives of an irreversible inhibitor of this enzyme, 5'-{[(Z)-4-amino-2-butenyl]methylamino}-5'-deoxyadenosine (MDL73811), have been developed with improved pharmacokinetic profiles and activity against related parasites, Trypanosoma brucei. Here, these derivatives were assayed for inhibition of AdoMetDC from P. falciparum parasites and the methylated derivative, 8-methyl-5'-{[(Z)-4-aminobut-2-enyl]methylamino}-5'-deoxyadenosine (Genz-644131) was shown to be the most active. The in vitro efficacy of Genz-644131 was markedly increased by nanoencapsulation in immunoliposomes, which specifically targeted intraerythrocytic P. falciparum parasites.

Keywords: Immunoliposomes, Plasmodium, Polyamines, S-adenosyl-l-methionine decarboxylase

Fiz, J. A., Jané, R., Lozano, M., Gómez, R., Ruiz, J., (2014). Detecting unilateral phrenic paralysis by acoustic respiratory analysis PLoS ONE 9, (4), e93595

The consequences of phrenic nerve paralysis vary from a considerable reduction in respiratory function to an apparently normal state. Acoustic analysis of lung sound intensity (LSI) could be an indirect non-invasive measurement of respiratory muscle function, comparing activity on the two sides of the thoracic cage. Lung sounds and airflow were recorded in ten males with unilateral phrenic paralysis and ten healthy subjects (5 men/5 women), during progressive increasing airflow maneuvers. Subjects were in sitting position and two acoustic sensors were placed on their back, on the left and right sides. LSI was determined from 1.2 to 2.4 L/s between 70 and 2000 Hz. LSI was significantly greater on the normal (19.3±4.0 dB) than the affected (5.7±3.5 dB) side in all patients (p = 0.0002), differences ranging from 9.9 to 21.3 dB (13.5±3.5 dB). In the healthy subjects, the LSI was similar on both left (15.1±6.3 dB) and right (17.4±5.7 dB) sides (p = 0.2730), differences ranging from 0.4 to 4.6 dB (2.3±1.6 dB). There was a positive linear relationship between the LSI and the airflow, with clear differences between the slope of patients (about 5 dB/L/s) and healthy subjects (about 10 dB/L/s). Furthermore, the LSI from the affected side of patients was close to the background noise level, at low airflows. As the airflow increases, the LSI from the affected side did also increase, but never reached the levels seen in healthy subjects. Moreover, the difference in LSI between healthy and paralyzed sides was higher in patients with lower FEV1 (%). The acoustic analysis of LSI is a relevant non-invasive technique to assess respiratory function. This method could reinforce the reliability of the diagnosis of unilateral phrenic paralysis, as well as the monitoring of these patients.

Sarlabous, Leonardo, Torres, Abel, Fiz, J. A., Jané, Raimon, (2014). Evidence towards improved estimation of respiratory muscle effort from diaphragm mechanomyographic signals with cardiac vibration interference using sample entropy with fixed tolerance values PLoS ONE 9, (2), e88902

The analysis of amplitude parameters of the diaphragm mechanomyographic (MMGdi) signal is a non-invasive technique to assess respiratory muscle effort and to detect and quantify the severity of respiratory muscle weakness. The amplitude of the MMGdi signal is usually evaluated using the average rectified value or the root mean square of the signal. However, these estimations are greatly affected by the presence of cardiac vibration or mechanocardiographic (MCG) noise. In this study, we present a method for improving the estimation of the respiratory muscle effort from MMGdi signals that is robust to the presence of MCG. This method is based on the calculation of the sample entropy using fixed tolerance values (fSampEn), that is, with tolerance values that are not normalized by the local standard deviation of the window analyzed. The behavior of the fSampEn parameter was tested in synthesized mechanomyographic signals, with different ratios between the amplitude of the MCG and clean mechanomyographic components. As an example of application of this technique, the use of fSampEn was explored also in recorded MMGdi signals, with different inspiratory loads. The results with both synthetic and recorded signals indicate that the entropy parameter is less affected by the MCG noise, especially at low signal-to-noise ratios. Therefore, we believe that the proposed fSampEn parameter could improve estimates of respiratory muscle effort from MMGdi signals with the presence of MCG interference.

Polese, Davide, Martinelli, Eugenio, Marco, Santiago, Di Natale, Corrado, Gutierrez-Galvez, Agustin, (2014). Understanding odor information segregation in the olfactory bulb by means of mitral and tufted cells PLoS ONE 9, (10), e109716

Odor identification is one of the main tasks of the olfactory system. It is performed almost independently from the concentration of the odor providing a robust recognition. This capacity to ignore concentration information does not preclude the olfactory system from estimating concentration itself. Significant experimental evidence has indicated that the olfactory system is able to infer simultaneously odor identity and intensity. However, it is still unclear at what level or levels of the olfactory pathway this segregation of information occurs. In this work, we study whether this odor information segregation is performed at the input stage of the olfactory bulb: the glomerular layer. To this end, we built a detailed neural model of the glomerular layer based on its known anatomical connections and conducted two simulated odor experiments. In the first experiment, the model was exposed to an odor stimulus dataset composed of six different odorants, each one dosed at six different concentrations. In the second experiment, we conducted an odor morphing experiment where a sequence of binary mixtures going from one odor to another through intermediate mixtures was presented to the model. The results of the experiments were visualized using principal components analysis and analyzed with hierarchical clustering to unveil the structure of the high-dimensional output space. Additionally, Fisher's discriminant ratio and Pearson's correlation coefficient were used to quantify odor identity and odor concentration information respectively. Our results showed that the architecture of the glomerular layer was able to mediate the segregation of odor information obtaining output spiking sequences of the principal neurons, namely the mitral and external tufted cells, strongly correlated with odor identity and concentration, respectively. An important conclusion is also that the morphological difference between the principal neurons is not key to achieve odor information segregation.

Rajzer, I., Menaszek, E., Kwiatkowski, R., Planell, J. A., Castaño, O., (2014). Electrospun gelatin/poly( Materials Science and Engineering: C 44, 183-190

In this study gelatin (Gel) modified with calcium phosphate nanoparticles (SG5) and polycaprolactone (PCL) were used to prepare a 3D bi-layer scaffold by collecting electrospun PCL and gelatin/SG5 fibers separately in the same collector. The objective of this study was to combine the desired properties of PCL and Gel/SG5 in the same scaffold in order to enhance mineralization, thus improving the ability of the scaffold to bond to the bone tissue. The scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and the wide angle X-ray diffraction (WAXD) measurements confirmed that SG5 nanoparticles were successfully incorporated into the fibrous gelatin matrix. The composite Gel/SG5/PCL scaffold exhibited more enhanced mechanical properties than individual Gel and Gel/SG5 scaffolds. The presence of SG5 nanoparticles accelerated the nucleation and growth of apatite crystals on the surface of the composite Gel/SG5/PCL scaffold in simulated body fluid (SBF). The osteoblast response in vitro to developed electrospun scaffolds (PCL and Gel/SG5/PCL) was investigated by using normal human primary NHOst cell lines. NHOst cell culture studies showed that higher alkaline phosphatase (ALP) activity and better mineralization were obtained in the case of composite materials than in pure PCL scaffolds. The mechanically strong PCL scaffold served as a skeleton, while the Gel/SG5 fibers facilitated cell spreading and mineralization of the scaffold.

Keywords: Bilayer fibrous scaffold, Ceramic nanoparticles, Electrospinning, Gelatin, Polycaprolactone, Biomechanics, Bone, Calcium phosphate, Cell culture, Electrospinning, Fourier transform infrared spectroscopy, Mechanical properties, Mineralogy, Nanoparticles, Phosphatases, Polycaprolactone, Scanning electron microscopy, X ray diffraction, Polycaprolactone, Alkaline phosphatase activity, Bone tissue engineering, Calcium phosphate nanoparticles, Ceramic nanoparticles, Fibrous scaffolds, Gelatin, Simulated body fluids, Wide-angle x-ray diffraction, Electrospuns, Scaffolds (biology), Electrospinning

Serra, T., Ortiz-Hernandez, M., Engel, E., Planell, J. A., Navarro, M., (2014). Relevance of PEG in PLA-based blends for tissue engineering 3D-printed scaffolds Materials Science and Engineering: C 38, (1), 55-62

Achieving high quality 3D-printed structures requires establishing the right printing conditions. Finding processing conditions that satisfy both the fabrication process and the final required scaffold properties is crucial. This work stresses the importance of studying the outcome of the plasticizing effect of PEG on PLA-based blends used for the fabrication of 3D-direct-printed scaffolds for tissue engineering applications. For this, PLA/PEG blends with 5, 10 and 20% (w/w) of PEG and PLA/PEG/bioactive CaP glass composites were processed in the form of 3D rapid prototyping scaffolds. Surface analysis and differential scanning calorimetry revealed a rearrangement of polymer chains and a topography, wettability and elastic modulus increase of the studied surfaces as PEG was incorporated. Moreover, addition of 10 and 20% PEG led to non-uniform 3D structures with lower mechanical properties. In vitro degradation studies showed that the inclusion of PEG significantly accelerated the degradation rate of the material. Results indicated that the presence of PEG not only improves PLA processing but also leads to relevant surface, geometrical and structural changes including modulation of the degradation rate of PLA-based 3D printed scaffolds.

Keywords: 3D-printing, Polylactic acid, Rapid prototyping, Scaffold, Surface characterization

Dietrich, M., Pedró, L., García, J., Pons, M., Hüttener, M., Paytubi, S., Madrid, C., Juárez, A., (2014). Evidence for moonlighting functions of the Journal of Bacteriology 196, (5), 1102-1112

The holE gene is an enterobacterial ORFan gene (open reading frame [ORF] with no detectable homology to other ORFs in a database). It encodes the θ subunit of the DNA polymerase III core complex. The precise function of the θ subunit within this complex is not well established, and loss of holE does not result in a noticeable phenotype. Paralogs of holE are also present on many conjugative plasmids and on phage P1 (hot gene). In this study, we provide evidence indicating that θ (HolE) exhibits structural and functional similarities to a family of nucleoid-associated regulatory proteins, the Hha/YdgT-like proteins that are also encoded by enterobacterial ORFan genes. Microarray studies comparing the transcriptional profiles of Escherichia coli holE, hha, and ydgT mutants revealed highly similar expression patterns for strains harboring holE and ydgT alleles. Among the genes differentially regulated in both mutants were genes of the tryptophanase (tna) operon. The tna operon consists of a transcribed leader region, tnaL, and two structural genes, tnaA and tnaB. Further experiments with transcriptional lacZ fusions (tnaL::lacZ and tnaA::lacZ) indicate that HolE and YdgT downregulate expression of the tna operon by possibly increasing the level of Rho-dependent transcription termination at the tna operon's leader region. Thus, for the first time, a regulatory function can be attributed to HolE, in addition to its role as structural component of the DNA polymerase III complex.

Malandrino, A., Noailly, J., Lacroix, D., (2014). Numerical exploration of the combined effect of nutrient supply, tissue condition and deformation in the intervertebral disc Journal of Biomechanics 47, (6), 1520-1525

Novel strategies to heal discogenic low back pain could highly benefit from comprehensive biophysical studies that consider both mechanical and biological factors involved in intervertebral disc degeneration. A decrease in nutrient availability at the bone-disc interface has been indicated as a relevant risk factor and as a possible initiator of cell death processes. Mechanical behaviour of both healthy and degenerated discs could highly interact with cell death in these compromised situations. In the present study, a mechano-transport finite element model was used to investigate the nature of mechanical effects on cell death processes via load-induced metabolic transport variations. Cycles of static sustained compression were chosen to simulate daily human activity. Healthy and degenerated cases were simulated as well as a reduced supply of solutes and an increase in solute exchange area at the bone-disc interface. Results showed that a reduction in metabolite concentrations at the bone-disc boundaries induced cell death, even when the increased exchange area was simulated. Slight local mechanical enhancements of glucose in the disc centre were capable of decelerating cell death but occurred only with healthy mechanical properties. However, mechanical deformations were responsible for a worsening in terms of cell death in the inner annulus, a disadvantaged zone far from the boundary supply with both an increased cell demand and a strain-dependent decrease of diffusivity. Such adverse mechanical effects were more accentuated when degenerative properties were simulated. Overall, this study paves the way for the use of biophysical models for a more integrated understanding of intervertebral disc pathophysiology.

Keywords: Boundary conditions, Cell nutrition, Cell viability, Computational analysis, Intervertebraldisc, Softtissuebiomechanics

Hüttener, M., Dietrich, M., Paytubi, S., Juárez, A., (2014). HilA-like regulators in Escherichia coli pathotypes: the YgeH protein from the enteroaggregative strain 042 BMC Microbiology 14, (268), 1-10

Background The HilA protein is the master regulator of the Salmonella pathogenicity island 1 (SPI1). EilA and YgeH proteins show a moderate similarity to HilA and are encoded in pathogenicity islands from several E. coli strains, both pathogenic and non-pathogenic. In the present work we characterize the YgeH protein from the enteroaggregative E. coli strain 042 (locus tag EC042_3050). Results We show that both E. coli 042 YgeH and EilA proteins are able to functionally replace HilA in Salmonella. Interestingly, this is not the rule for all YgeH proteins: the YgeH protein from the enterohaemorragic E. coli strain O157 appears to be non-functional. ygeH expression is not influenced by growth osmolarity or temperature, and moderately increases in cells entering the stationary phase. H-NS represses ygeH expression under all growth conditions tested, and binds with specificity to the ygeH promoter region. As expected, expression of ETT2 (Escherichia coli type 3 secretion system 2) genes requires YgeH: ETT2 operons are downregulated in a ygeH mutant. Accordingly, since H-NS represses ygeH expression, ETT2 expression is significantly increased in an hns mutant. Conclusion E. coli 042 YgeH protein is functional and able to replace HilA in Salmonella. ETT2 gene expression requires YgeH activity which, in turn, is subjected to H-NS silencing.

Keywords: HilA, YgeH, E. coli 042, H-NS

Dessì, M., Alvarez-Perez, M. A., De Santis, R., Ginebra, M. P., Planell, J. A., Ambrosio, L., (2014). Bioactivation of calcium deficient hydroxyapatite with foamed gelatin gel. A new injectable self-setting bone analogue Journal of Materials Science: Materials in Medicine 25, (2), 283-295

An alternative approach to bone repair for less invasive surgical techniques, involves the development of biomaterials directly injectable into the injury sites and able to replicate a spatially organized platform with features of bone tissue. Here, the preparation and characterization of an innovative injectable bone analogue made of calcium deficient hydroxyapatite and foamed gelatin is presented. The biopolymer features and the cement self-setting reaction were investigated by rheological analysis. The porous architecture, the evolution of surface morphology and the grains dimension were analyzed with electron microscopy (SEM/ESEM/TEM). The physico-chemical properties were characterized by X-ray diffraction and FTIR analysis. Moreover, an injection test was carried out to prove the positive effect of gelatin on the flow ensuing that cement is fully injectable. The cement mechanical properties are adequate to function as temporary substrate for bone tissue regeneration. Furthermore, MG63 cells and bone marrow-derived human mesenchymal stem cells (hMSCs) were able to migrate and proliferate inside the pores, and hMSCs differentiated to the osteoblastic phenotype. The results are paving the way for an injectable bone substitute with properties that mimic natural bone tissue allowing the successful use as bone filler for craniofacial and orthopedic reconstructions in regenerative medicine.

Mateos-Timoneda, M. A., Castaño, O., Planell, J. A., Engel, E., (2014). Effect of structure, topography and chemistry on fibroblast adhesion and morphology Journal of Materials Science: Materials in Medicine 25, (7), 1781-1787

Surface biofunctionalisation of many biodegradable polymers is one of the used strategies to improve the biological activity of such materials. In this work, the introduction of collagen type I over the surface of a biodegradable polymer (poly lactic acid) processed in the forms of films and fibers leads to an enhancing of the cellular adhesion of human dermal fibroblast when compared to unmodified polymer and biomolecule-physisorbed polymer surface. The change of topography of the material does not affect the cellular adhesion but results in a higher proliferation of the fibroblast cultured over the fibers. Moreover, the difference of topography governs the cellular morphology, i.e. cells adopt a more stretched conformation where cultured over the films while a more elongated with lower area morphology are obtained for the cells grown over the fibers. This study is relevant for designing and modifying different biodegradable polymers for their use as scaffolds for different applications in the field of Tissue Engineering and Regenerative Medicine.

Castillo-Fernandez, O., Rodriguez-Trujillo, R., Gomila, G., Samitier, J., (2014). High-speed counting and sizing of cells in an impedance flow microcytometer with compact electronic instrumentation Microfluidics and Nanofluidics 16, (1-2), 91-99

Here we describe a high-throughput impedance flow cytometer on a chip. This device was built using compact and inexpensive electronic instrumentation. The system was used to count and size a mixed cell sample containing red blood cells and white blood cells. It demonstrated a counting capacity of up to ~500 counts/s and was validated through a synchronised high-speed optical detection system. In addition, the device showed excellent discrimination performance under high-throughput conditions.

Keywords: Electronics, Impedance, Microcytometry, Microfluidics, Red blood cells (RBCs), White blood cells (WBCs)

Gomez-Santacana, X., Rovira, X., Dalton, J. A., Goudet, C., Pin, J. P., Gorostiza, P., Giraldo, J., Llebaria, A., (2014). A double effect molecular switch leads to a novel potent negative allosteric modulator of metabotropic glutamate receptor 5 MedChemComm 5, (10), 1548-1554

Compounds that modulate the function of G-protein-coupled receptors (GPCRs) by binding to their allosteric sites are of potential interest for the treatment of multiple CNS and non-CNS disorders. Allosteric ligands can act either as positive (PAM), negative (NAM), or silent (SAM) receptor modulators and have numerous advantages over classic orthosteric compounds, including improved GPCR-subtype selectivity; the capacity to adapt to physiological conditions; and better safety profiles. Despite these benefits, allosteric modulators are difficult to design and optimize and are often prone to "molecular switching": a structural phenomenon by which very subtle chemical variations in the ligand result in unexpected changes in selectivity profiles or pharmacology, changing PAMs to NAMs or vice versa. Here, we report the discovery of a nanomolar and subtype selective NAM of metabotropic glutamate receptor 5 (mGlu5) through a targeted "double effect molecular switch" of a potent mGlu4 PAM, and suggests a promising approach towards the discovery of novel mGluR allosteric modulators.

González, L., Otero, J., Agusil, J. P., Samitier, J., Adan, J., Mitjans, F., Puig-Vidal, M., (2014). Micropattern of antibodies imaged by shear force microscopy: Comparison between classical and jumping modes Ultramicroscopy 136, 176-184

Quartz tuning fork devices are increasingly being used as nanosensors in Scanning Probe Microscopy. They offer some benefits with respect to standard microfabricated cantilevers in certain experimental setups including the study of biomolecules under physiological conditions. In this work, we compare three different working modes for imaging micropatterned antibodies with quartz tuning fork sensors: apart from the classical amplitude and frequency modulation strategies, for first time the jumping mode is implemented using tuning forks. Our results show that the molecules suffer less degradation when working in the jumping mode, due to the reduction of the interaction forces.

Martinez, Dani, Teixidó, Mercè, Font, Davinia, Moreno, Javier, Tresanchez, Marcel, Marco, Santiago, Palacín, Jordi, (2014). Ambient intelligence application based on environmental measurements performed with an assistant mobile robot Sensors 14, (4), 6045-6055

This paper proposes the use of an autonomous assistant mobile robot in order to monitor the environmental conditions of a large indoor area and develop an ambient intelligence application. The mobile robot uses single high performance embedded sensors in order to collect and geo-reference environmental information such as ambient temperature, air velocity and orientation and gas concentration. The data collected with the assistant mobile robot is analyzed in order to detect unusual measurements or discrepancies and develop focused corrective ambient actions. This paper shows an example of the measurements performed in a research facility which have enabled the detection and location of an uncomfortable temperature profile inside an office of the research facility. The ambient intelligent application has been developed by performing some localized ambient measurements that have been analyzed in order to propose some ambient actuations to correct the uncomfortable temperature profile.

Keywords: Ambient intelligence, Human thermal comfort, Robotic exploration

Bennetts, Victor, Schaffernicht, Erik, Pomareda, Victor, Lilienthal, Achim, Marco, Santiago, Trincavelli, Marco, (2014). Combining non selective gas sensors on a mobile robot for identification and mapping of multiple chemical compounds Sensors 14, (9), 17331-17352

In this paper, we address the task of gas distribution modeling in scenarios where multiple heterogeneous compounds are present. Gas distribution modeling is particularly useful in emission monitoring applications where spatial representations of the gaseous patches can be used to identify emission hot spots. In realistic environments, the presence of multiple chemicals is expected and therefore, gas discrimination has to be incorporated in the modeling process. The approach presented in this work addresses the task of gas distribution modeling by combining different non selective gas sensors. Gas discrimination is addressed with an open sampling system, composed by an array of metal oxide sensors and a probabilistic algorithm tailored to uncontrolled environments. For each of the identified compounds, the mapping algorithm generates a calibrated gas distribution model using the classification uncertainty and the concentration readings acquired with a photo ionization detector. The meta parameters of the proposed modeling algorithm are automatically learned from the data. The approach was validated with a gas sensitive robot patrolling outdoor and indoor scenarios, where two different chemicals were released simultaneously. The experimental results show that the generated multi compound maps can be used to accurately predict the location of emitting gas sources.

Keywords: Environmental monitoring, Gas discrimination, Gas distribution mapping, Service robots, Open sampling systems, PID, Metal oxide sensors

Juanola-Feliu, E., Miribel-Català, P. L., Avilés, C. P., Colomer-Farrarons, J., González-Piñero, M., Samitier, J., (2014). Design of a customized multipurpose nano-enabled implantable system for in-vivo theranostics Sensors 14, (10), 19275-19306

The first part of this paper reviews the current development and key issues on implantable multi-sensor devices for in vivo theranostics. Afterwards, the authors propose an innovative biomedical multisensory system for in vivo biomarker monitoring that could be suitable for customized theranostics applications. At this point, findings suggest that cross-cutting Key Enabling Technologies (KETs) could improve the overall performance of the system given that the convergence of technologies in nanotechnology, biotechnology, micro&nanoelectronics and advanced materials permit the development of new medical devices of small dimensions, using biocompatible materials, and embedding reliable and targeted biosensors, high speed data communication, and even energy autonomy. Therefore, this article deals with new research and market challenges of implantable sensor devices, from the point of view of the pervasive system, and time-to-market. The remote clinical monitoring approach introduced in this paper could be based on an array of biosensors to extract information from the patient. A key contribution of the authors is that the general architecture introduced in this paper would require minor modifications for the final customized bio-implantable medical device.

Keywords: Biocompatible, Biosensor, Biotelemetry, Implantable multi-sensor, Innovation, KET, Nanomedicine, Personalized medicine, Biotelemetry, Innovation, Medical nanotechnology, Biocompatible, Implantable system, In-vivo, KET, Multi sensor, Personalized medicines, Theranostics, Biosensors

Mir, M., Lugo, R., Tahirbegi, I. B., Samitier, J., (2014). Miniaturizable ion-selective arrays based on highly stable polymer membranes for biomedical applications Sensors 14, (7), 11844-11854

Poly(vinylchloride) (PVC) is the most common polymer matrix used in the fabrication of ion-selective electrodes (ISEs). However, the surfaces of PVC-based sensors have been reported to show membrane instability. In an attempt to overcome this limitation, here we developed two alternative methods for the preparation of highly stable and robust ion-selective sensors. These platforms are based on the selective electropolymerization of poly(3,4-ethylenedioxythiophene) (PEDOT), where the sulfur atoms contained in the polymer covalently interact with the gold electrode, also permitting controlled selective attachment on a miniaturized electrode in an array format. This platform sensor was improved with the crosslinking of the membrane compounds with poly(ethyleneglycol) diglycidyl ether (PEG), thus also increasing the biocompatibility of the sensor. The resulting ISE membranes showed faster signal stabilization of the sensor response compared with that of the PVC matrix and also better reproducibility and stability, thus making these platforms highly suitable candidates for the manufacture of robust implantable sensors.

Keywords: Biomedicine, Electrochemistry, Endoscope, Implantable device, Ion-selective electrode (ISE) sensor, Ischemia, pH detection, Biocompatibility, Chemical sensors, Electrochemistry, Electrodes, Electropolymerization, Endoscopy, Functional polymers, Implants (surgical), Ion selective electrodes, Medical applications, Polyvinyl chlorides, Stabilization, Biomedical applications, Biomedicine, Implantable devices, Ion selective sensors, Ischemia, Membrane instability, pH detection, Poly(3 ,4 ethylenedioxythiophene) (PEDOT), Ion selective membranes

Tahirbegi, I. B., Alvira, M., Mir, M., Samitier, J., (2014). Simple and fast method for fabrication of endoscopic implantable sensor arrays Sensors 14, (7), 11416-11426

Here we have developed a simple method for the fabrication of disposable implantable all-solid-state ion-selective electrodes (ISE) in an array format without using complex fabrication equipment or clean room facilities. The electrodes were designed in a needle shape instead of planar electrodes for a full contact with the tissue. The needle-shape platform comprises 12 metallic pins which were functionalized with conductive inks and ISE membranes. The modified microelectrodes were characterized with cyclic voltammetry, scanning electron microscope (SEM), and optical interferometry. The surface area and roughness factor of each microelectrode were determined and reproducible values were obtained for all the microelectrodes on the array. In this work, the microelectrodes were modified with membranes for the detection of pH and nitrate ions to prove the reliability of the fabricated sensor array platform adapted to an endoscope.

Keywords: Chemical sensors, Cyclic voltammetry, Electrochemistry, Endoscopy, Fabrication, Implants (surgical), Microelectrodes, Needles, Nitrates, Scanning electron microscopy, Biomedicine, Fabricated sensors, Fabrication equipment, Implantable devices, Implantable sensors, Optical interferometry, Planar electrode, Roughness factor, Ion selective electrodes

Sachot, N., Engel, E., Castaño, O., (2014). Hybrid organic-inorganic scaffolding biomaterials for regenerative therapies Current Organic Chemistry 18, (18), 2299-2314

The introduction of hybrid materials in regenerative medicine has solved some problems related to the mechanical and bioactive properties of biomaterials. Calcium phosphates and their derivatives have provided the basis for inorganic components, thanks to their good bioactivity, especially in bone regeneration. When mixed with biodegradable polymers, the result is a synergic association that mimics the composition of many tissues of the human body and, additionally, exhibits suitable mechanical properties. Together with the development of nanotechnology and new synthesis methods, hybrids offer a promising option for the development of a third or fourth generation of smart biomaterials and scaffolds to guide the regeneration of natural tissues, with an optimum efficiency/cost ratio. Their potential bioactivity, as well as other valuable features of hybrids, open promising new pathways for their use in bone regeneration and other tissue repair therapies. This review provides a comprehensive overview of the different hybrid organic-inorganic scaffolding biomaterials developed so far for regenerative therapies, especially in bone. It also looks at the potential for research into hybrid materials for other, softer tissues, which is still at an initial stage, but with very promising results.

Keywords: Biodegradable polymer, Hybrid materials, Nanoparticles, Ormoglass

Álvarez, Z., Sena, E., Mattotti, M., Engel, E., Alcántara, S., (2014). An efficient and reproducible method to culture Bergmann and cortical radial glia using textured PMMA Journal of Neuroscience Methods 232, 93-101

Background: Radial glia cells comprise the principal population of neural stem cells (NSC) during development. Attempts to develop reproducible radial glia and NSC culture methods have met with variable results, yielding non-adherent cultures or requiring the addition of growth factors. Recent studies demonstrated that a 2-μm patterned poly-methyl methacrylate (ln2 PMMA) grooved scaffold, by mimicking the biophysical and microtopographic properties of the embryonic NSC niche, induces the de-differentiation of glial cells into functional radial glia cells. New method: Here we describe a method for obtaining cultures of adherent Bergmann radial glia (BRG) and cortical radial glia (CRG). The growth substrate is ln2 PMMA and the addition of growth factors is not required. Results: Postnatal glia obtained from mouse cerebellum or cerebral cortex and grown on ln2 PMMA adopted a BRG/CRG phenotype characterized by a bipolar shape, the up-regulation of progenitor markers such as nestin and Sox2, and the down-regulation of vimentin and GFAP. Neurons cultured over the BRG/CRG aligned their processes with those of the glial shafts, thus mimicking the behavior of migrating neuronal cells. Comparison with existing methods: The ln2 PMMA culture method offers an ideal system for analyzing both the biochemical factors controlling the neurogenic potential of BRG/CRG and neuronal migration. Conclusions: The ln2 PMMA method is a reproducible system to obtain immature BRG/CRG preparations in vitro. It can be used to study the properties of CNS progenitor cells as well as the interactions between radial glia and neurons, and supports cultured progenitors for use in different applications. © 2014 Elsevier B.V.

Keywords: Astrocytes, Bergmann glia, Micro-patterning, Poly-methyl methacrylate (PMMA), Progenitors, Radial glia, Surface topography

Nonaka, P. N., Uriarte, J. J., Campillo, N., Melo, E., Navajas, D., Farré, R., Oliveira, L. V. F., (2014). Mechanical properties of mouse lungs along organ decellularization by sodium dodecyl sulfate Respiratory Physiology & Neurobiology 200, 1-5

Lung decellularization is based on the use of physical, chemical, or enzymatic methods to break down the integrity of the cells followed by a treatment to extract the cellular material from the lung scaffold. The aim of this study was to characterize the mechanical changes throughout the different steps of lung decellularization process. Four lungs from mice (C57BL/6) were decellularized by using a conventional protocol based on sodium dodecyl sulfate. Lungs resistance (RL) and elastance (EL) were measured along decellularization steps and were computed by linear regression fitting of tracheal pressure, flow, and volume during mechanical ventilation. Transients differences found were more distinct in an intermediate step after the lungs were rinsed with deionized water and treated with 1% SDS, whereupon the percentage of variation reached approximately 80% for resistance values and 30% for elastance values. In conclusion, although a variation in extracellular matrix stiffness was observed during the decellularization process, this variation can be considered negligible overall because the resistance and elastance returned to basal values at the final decellularization step.

Keywords: Lung bioengineering, Lung decellularization, Organ scaffold, dodecyl sulfate sodium, animal tissue, article, artificial ventilation, compliance (physical), controlled study, enzyme chemistry, extracellular matrix, female, flow, lung, lung decellularization, lung pressure, lung resistance, mouse, nonhuman, positive end expiratory pressure, priority journal, rigidity, tissue engineering, trachea pressure

Sánchez Egea, Antonio J., Valera, Marius, Parraga Quiroga, Juan Manuel, Proubasta, Ignasi, Noailly, J., Lacroix, Damien, (2014). Impact of hip anatomical variations on the cartilage stress: A finite element analysis towards the biomechanical exploration of the factors that may explain primary hip arthritis in morphologically normal subjects Clinical Biomechanics 29, (4), 444-450

AbstractBackground Hip arthritis is a pathology linked to hip-cartilage degeneration. Although the aetiology of this disease is not well defined, it is known that age is a determinant risk factor. However, hip arthritis in young patients could be largely promoted by biomechanical factors. The objective of this paper is to analyze the impact of some normal anatomical variations on the cartilage stress distributions numerically predicted at the hip joint during walking. Methods A three-dimensional finite element model of the femur and the pelvis with the most relevant axial components of muscle forces was used to simulate normal walking activity. The hip anatomical condition was defined by: neck shaft angle, femoral anteversion angle, and acetabular anteversion angle with a range of 110-130º, 0-20º, and 0-20º, respectively. The direct boundary method was used to simulate the hip contact. Findings The hydrostatic stress found at the cartilage and labrum showed that a ± 10º variation with respect to the reference brings significant differences between the anatomic models. Acetabular anteversion angle of 0º and femoral anteversion angle of 0º were the most affected anatomical conditions with values of hydrostatic stress in the cartilage near 5 MPa under compression. Interpretation Cartilage stresses and contact areas were equivalent to the results found in literature and the most critical anatomical regions in terms of tissue loads were in a good accordance with clinical evidence. Altogether, results showed that decreasing femoral or acetabular anteversion angles isolately causes a dramatic increase in cartilage loads.

Keywords: Hip arthritis, Neck shaft angle, Femoral and acetabular anteversions, Cartilage load, Hip joint contact, Finite element analysis

Badesa, F. J., Morales, R., Garcia-Aracil, N., Sabater, J. M., Casals, A., Zollo, L., (2014). Auto-adaptive robot-aided therapy using machine learning techniques Computer Methods and Programs in Biomedicine 116, (2), 123-130

This paper presents an application of a classification method to adaptively and dynamically modify the therapy and real-time displays of a virtual reality system in accordance with the specific state of each patient using his/her physiological reactions. First, a theoretical background about several machine learning techniques for classification is presented. Then, nine machine learning techniques are compared in order to select the best candidate in terms of accuracy. Finally, first experimental results are presented to show that the therapy can be modulated in function of the patient state using machine learning classification techniques.

Torrent-Burgués, J., Cea, P., Giner, I., Guaus, E., (2014). Characterization of Langmuir and Langmuir-Blodgett films of an octasubstituted zinc phthalocyanine Thin Solid Films 556, 485-494

In this work we report the fabrication of Langmuir and Langmuir-Blodgett (LB) films of a substituted ZnPc (octakis(oxyoctyl)phthalocyanine of zinc), and their characterization by means of several techniques. These characterization techniques include surface pressure (π-A) and surface potential (ΔV-A) isotherms as well as UV-vis Reflection spectroscopy and Brewster Angle Microscopy (BAM) for the films at the air-water interface together with UV-vis absorption and IR spectroscopies and Atomic Force Microscopy (AFM) for the LB films. The π-A and ΔV-A isotherms and BAM images indicate a phase transition at a surface pressure of ca. 9 mN/m and a multilayer formation at surface pressures around 19-20 mN/m; at a surface pressure around 27 mN/m a disordered collapse of the film occurs. In addition, AFM images of LB films at π = 10 mN/m and π = 20 mN/m show a monomolecular and a multilayered film, respectively. The comparison of the UV-vis spectrum of ZnPc in solution, the reflection spectra of the Langmuir films and UV-vis spectra of LB films reveals a significant reduction in the Q band intensity for the films, indicative of an organization of ZnPc in the Langmuir and LB films versus the random distribution in solution. The UV-vis Reflection spectra are also consistent with multilayer formation at surface pressures around 19-20 mN/m. The relative intensities of the IR spectrum bands change from the KBr pellet to the LB film which is also attributable to orientation effects in the film. Cyclic voltammetric experiments of LB films incorporating the ZnPc derivative show peaks that can be correlated with redox processes occurring in the phthalocyanine ring. A small but significant influence of the surface pressure and the number of deposited layers in the electrochemical behaviour is observed. The electrochemical response of cast films exhibits some differences with respect to that of LB films which have been attributed to their different molecular organizations.

Keywords: Atomic Force Microscopy, Electrochemistry, Langmuir-Blodgett, Multilayers, Optical spectroscopy techniques, Zinc phthalocyanine, Atomic force microscopy, Electrochemistry, Interfaces (materials), Isotherms, Multilayers, Nitrogen compounds, Optical multilayers, Organic polymers, Zinc compounds, Brewster angle microscopy, Characterization techniques, Electrochemical behaviour, Langmuir and langmuir-blodgett films, Langmuir-blodgett, Optical spectroscopy techniques, UV-Vis Reflection Spectroscopy, Zinc phthalocyanines, Langmuir Blodgett films

Tajes, M., Ramos-Fernández, E., Weng-Jiang, X., Bosch-Morató, M., Guivernau, B., Eraso-Pichot, A., Salvador, B., Fernàndez-Busquets, X., Roquer, J., Muñoz, F. J., (2014). The blood-brain barrier: Structure, function and therapeutic approaches to cross it Molecular Membrane Biology 31, (5), 152-167

The blood-brain barrier (BBB) is constituted by a specialized vascular endothelium that interacts directly with astrocytes, neurons and pericytes. It protects the brain from the molecules of the systemic circulation but it has to be overcome for the proper treatment of brain cancer, psychiatric disorders or neurodegenerative diseases, which are dramatically increasing as the population ages. In the present work we have revised the current knowledge on the cellular structure of the BBB and the different procedures utilized currently and those proposed to cross it. Chemical modifications of the drugs, such as increasing their lipophilicity, turn them more prone to be internalized in the brain. Other mechanisms are the use of molecular tools to bind the drugs such as small immunoglobulins, liposomes or nanoparticles that will act as Trojan Horses favoring the drug delivery in brain. This fusion of the classical pharmacology with nanotechnology has opened a wide field to many different approaches with promising results to hypothesize that BBB will not be a major problem for the new generation of neuroactive drugs. The present review provides an overview of all state-of-the-art of the BBB structure and function, as well as of the classic strategies and these appeared in recent years to deliver drugs into the brain for the treatment of Central Nervous System (CNS) diseases.

Keywords: Blood brain barrier, Drug delivery, Membrane transport

Redondo-Morata, L., Giannotti, M. I., Sanz, F., (2014). Structural impact of cations on lipid bilayer models: Nanomechanical properties by AFM-force spectroscopy Molecular Membrane Biology 31, (1), 17-28

Atomic Force Microscopy (AFM) has become an invaluable tool for studying the micro-and nanoworlds. As a stand-alone, high-resolution imaging technique and force transducer, it defies most other surface instrumentation in ease of use, sensitivity and versatility. The main strength of AFM relies on the possibility to operate in an aqueous environment on a wide variety of biological samples, from single molecules-DNA or proteins-to macromolecular assemblies like biological membranes. Understanding the effect of mechanical stress on membranes is of primary importance in biophysics, since cells are known to perform their function under a complex combination of forces. In the later years, AFM-based Force-Spectroscopy (AFM-FS) has provided a new vista on membrane mechanics in a confined area within the nanometer realm, where most of the specific molecular interactions take place. Lipid membranes are electrostatically charged entities that physiologically coexist with electrolyte solutions. Thus, specific interactions with ions are a matter of considerable interest. The distribution of ions in the solution and their interaction with the membranes are factors that substantially modify the structure and dynamics of the cell membranes. Furthermore, signaling processes are modified by the membrane capability of retaining ions. Supported Lipid Bilayers (SLBs) are a versatile tool to investigate phospholipid membranes mimicking biological surfaces. In the present contribution, we review selected experiments on the mechanical stability of SLBs as models of lipid membranes by means of AFM-FS, with special focus on the effect of cations and ionic strength in the overall nanomechanical stability.

Keywords: Atomic force microscopy, Cations, Force spectroscopy, Lipid bilayer, Mechanical stability

Birhane, Y., Otero, J., Pérez-Murano, F., Fumagalli, L., Gomila, G., Bausells, J., (2014). Batch fabrication of insulated conductive scanning probe microscopy probes with reduced capacitive coupling Microelectronic Engineering 119, 44-47

We report a novel fabrication process for the batch fabrication of insulated conductive scanning probe microscopy (SPM) probes for electrical and topographic characterization of soft samples in liquid media at the nanoscale. The whole SPM probe structure is insulated with a dielectric material except at the very tip end and at the contact pad area to minimize the leakage current in liquid. Additionally, the geometry of the conducting layer in the probe cantilever and substrate is engineered to reduce the parasitic capacitance coupling with the sample. The electrical characterization of the probes has shown that parasitic capacitances are significantly reduced as compared to fully metallized cantilevers.

Keywords: Conductive scanning probe microscopy (C-SPM), EFM, SECM, SECM-AFM, SIM

Jané, R., (2014). Engineering Sleep Disorders: From classical CPAP devices toward new intelligent adaptive ventilatory therapy IEEE Pulse 5, (5), 29-32

Among the most common sleep disorders are those related to disruptions in airflow (apnea) or reductions in the breath amplitude (hypopnea) with or without obstruction of the upper airway (UA). One of the most important sleep disorders is obstructive sleep apnea (OSA). This sleep-disordered breathing, quantified by the apnea-hypopnea index (AHI), can produce a significant reduction of oxygen saturation and an abnormal elevation of carbon dioxide levels in the blood. Apnea and hypopnea episodes are associated with arousals and sleep fragmentation during the night and compensatory response of the autonomic nervous system.

Keywords: Biomedical engineering, Biomedical measurements, Biomedical monitoring, Breathing disorders, Medical conditions, Medical treatment, Sleep, Sleep apnea

Marco, S., Gutiérrez-Gálvez, A., Lansner, A., Martinez, D., Rospars, J. P., Beccherelli, R., Perera, A., Pearce, T. C., Verschure, P. F. M. J., Persaud, K., (2014). A biomimetic approach to machine olfaction, featuring a very large-scale chemical sensor array and embedded neuro-bio-inspired computation Microsystem Technologies 20, (4-5), 729-742

Biological olfaction outperforms chemical instrumentation in specificity, response time, detection limit, coding capacity, time stability, robustness, size, power consumption, and portability. This biological function provides outstanding performance due, in a large extent, to the unique architecture of the olfactory pathway, which combines a high degree of redundancy and efficient combinatorial coding, with unmatched chemical information processing mechanisms. The last decade has seen important advances in the understanding of the computational primitives underlying the functioning of the olfactory system. The EU-funded Project NEUROCHEM (Bio-ICT-FET- 216916) developed novel computing paradigms and biologically motivated artefacts for chemical sensing, taking its inspiration from the biological olfactory pathway. To demonstrate this approach, a biomimetic demonstrator has been built that features a very large-scale sensor array (65,536 elements) using conducting polymer technology which mimics the olfactory receptor neuron layer. It implements derived computational neuroscience algorithms in an embedded system that interfaces the chemical sensors and processes their signals in real-time. This embedded system integrates abstracted computational models of the main anatomic building blocks in the olfactory pathway: the olfactory bulb, and olfactory cortex in vertebrates (respectively, antennal lobe and mushroom bodies in the insect). For implementation in the embedded processor, an abstraction phase has been carried out in which their processing capabilities are captured by algorithmic solutions implemented in software. Finally, the algorithmic models are tested in mixed chemical plumes with an odour robot having navigation capabilities.

Eyleen, Araya, Marcelo J, Kogan, Aleix G, Guell, Carlos A, Escobar, Fausto, Sanz, (2014). Sensing immobilized molecules of streptavidin on a silicon surface by MALDI-TOF mass espectrometry and fluorescence microscopy Journal of the Chilean Chemical Society 59, (2), 2458-2463

A hydrogen-terminated Si (111) surface was modified to form an aminoterminated monolayer for immobilization of streptavidin. Cleavage of an N-(

Oller-Moreno, S., Pardo, A., Jimenez-Soto, J. M., Samitier, J., Marco, S., (2014). Adaptive Asymmetric Least Squares baseline estimation for analytical instruments SSD 2014 Proceedings 11th International Multi-Conference on Systems, Signals & Devices (SSD) , IEEE (Castelldefels-Barcelona, Spain) , 1569846703

Automated signal processing in analytical instrumentation is today required for the analysis of highly complex biomedical samples. Baseline estimation techniques are often used to correct long term instrument contamination or degradation. They are essential for accurate peak area integration. Some methods approach the baseline estimation iteratively, trying to ignore peaks which do not belong to the baseline. The proposed method in this work consists of a modification of the Asymmetric Least Squares (ALS) baseline removal technique developed by Eilers and Boelens. The ALS technique suffers from bias in the presence of intense peaks (in relation to the noise level). This is typical of diverse instrumental techniques such as Gas Chromatography-Mass Spectrometry (GC-MS) or Gas Chromatography-Ion Mobility Spectrometry (GC-IMS). In this work, we propose a modification (named psalsa) to the asymmetry weights of the original ALS method in order to better reject large peaks above the baseline. Our method will be compared to several versions of the ALS algorithm using synthetic and real GC signals. Results show that our proposal improves previous versions being more robust to parameter variations and providing more accurate peak areas.

Keywords: Gas chromatography, Instruments, Radioactivity measurement, Signal processing, Analytical instrument, Analytical Instrumentation, Asymmetric least squares, Baseline estimation, Baseline removal, Gas chromatography-mass spectrometries (GC-MS), Instrumental techniques, Noise levels, Iterative methods

Lozano, M., Fiz, J., Jané, R., (2014). Análisis de la intensidad de los sonidos respiratorios para el diagnóstico de la parálisis frénica unilateral CASEIB Proceedings XXXII Congreso Anual de la Sociedad Española de Ingeniería Biomédica (CASEIB 2014) , Sociedad Española de Ingeniería Biomédica (Barcelona, Spain) , 1-4

(ISR) es una medida indirecta y no invasiva de la función respiratoria, que permite comparar la actividad en los dos hemitórax de los pacientes con parálisis frénica unilateral. Se registraron los sonidos y el flujo respiratorio en 10 hombres con parálisis frénica unilateral y 10 sujetos sanos (5 hombres/5 mujeres) en posición sentada. Se colocaron 2 micrófonos de contacto en la espalda, uno a cada lado de la columna. La ISR se calculó en el rango frecuencial 70-2000 Hz a partir de la densidad espectral de potencia y para flujos entre 1,2 y 2,4 l/s. Se encontró que las diferencias en la ISR media de los dos hemitórax era significativamente mayor en los pacientes (13.5 dB) que en los sujetos sanos (2.3 dB). Además, se comprobó que esa diferencia era mayor en pacientes con un volumen espiratorio forzado en el primer segundo menor. Por lo tanto, el análisis acústico de la ISR es una técnica no invasiva muy útil para valorar la función respiratoria. Esta técnica puede mejorar la fiabilidad en el diagnóstico de la parálisis frénica unilateral así como la monitorización a largo plazo de estos pacientes.

Tellez, J. P., Herrera, S., Benito, S., Giraldo, B. F., (2014). Analysis of the breathing pattern in elderly patients using the hurst exponent applied to the respiratory flow signal Engineering in Medicine and Biology Society (EMBC) 36th Annual International Conference of the IEEE , IEEE (Chicago, USA) , 3422-3425

Due to the increasing elderly population and the extensive number of comorbidities that affect them, studies are required to determine future increments in admission to emergency departments. Some of these studies could focus on the relation between chronic diseases and breathing pattern in elderly patients. Variations in the fractal properties of respiratory signals can be associated with several diseases. To determine the relationship between these variations and breathing patterns, and to quantify the fractal properties of respiratory flow signals, we estimated the Hurst exponent (H). Detrended fluctuation analysis (DFA) and discrete wavelet transform-based estimation (DWTE) methods were applied. The estimation methods were analyzed using simulated data series generated by fractional Gaussian noise. 43 elderly patients (19 patients with a non-periodic breathing pattern - nPB, and 24 patients with a periodic breathing pattern - PB) were studied. The results were evaluated according to the length of data and the number of averaged data series used to obtain a good estimation. The DWTE method estimated the respiratory flow signals better than the DFA method, and obtained Hurst values clustered by group. We found significant differences in the H exponent (p = 0.002) between PB and nPB patients, which showed different behavior in the fractal properties.

Keywords: Discrete wavelet transforms, Diseases, Estimation, Fractals, Modulation, Senior citizens, Time series analysis

Vaca, R., Aranda, J., (2014). Approximating coupler curves using strip trees Advanced Numerical Methods II 11th World Congress on Computational Mechanics (WCCM XI) 5th European Conference on Computational Mechanics (ECCM V) 6th European Conference on Computational Fluid Dynamics (ECFD VI) , CIMNE (Barcelona, Spain) , 1-2

For the mechanisms considered under the title linkages, coupler curve is the path traced by one of the point on the coupler link considered as an output of the mechanism which is joined to a fixed link. The equation of the coupler curve generated can be obtained solving a set of equations which describes distance constancy between all points of a mechanism and this coupler curve is the eliminant of these equations. The proposal to this work is to approximate coupler curves using strip trees.

Keywords: Coupler curves, Strip tress, Distance geometry, Affine arithmetics, Planar linkages

Fernandez, L., Marco, S., (2014). Calibration transfer between e-noses Signal Processing and Communications Applications Conference (SIU) Signal Processing and Communications Applications Conference (SIU), 2014 22nd , IEEE (Trabzon, Turkey) , 650-653

Electronic nose is an instrument which is composed of gas sensor array and pattern recognition unit. It is generally used for classifying, identifying or quantifying the odors or volatile organic components for these commonly used devices, calibration transfer is an important issue because of differences in each instrument, sensor drift, changes in environmental conditions or background changes. Calibration transfer is a transfer of model between different instruments which have different conditions. In this study, calibration transfer is applied to the e-noses which have different temperature conditions. Also the results of the direct standardization, piecewise direct standardization and orthogonal signal correction which are different calibration methods were compared. The results of the piecewise direct standardization method are more successful than the other methods for the dataset which is used in this study.

Keywords: Calibration, Conferences, Electronic noses, Ethanol, Instruments, Signal processing, Standardization

Sheik, S., Marco, S., Huerta, R., Fonollosa, J., (2014). Continuous prediction in chemoresisitive gas sensors using reservoir computing Procedia Engineering 28th European Conference on Solid-State Transducers (EUROSENSORS 2014) , Eurosensors (Brescia, Italy) 87, 843-846

Although Metal Oxide (MOX) sensors are predominant choices to perform fundamental tasks of chemical detection, their use has been mainly limited to relatively controlled scenarios where a gas sensor array is first exposed to a reference, then to the gas sample, and finally to the reference again to recover the initial state. In this paper we propose the use of MOX sensors along with Reservoir Computing algorithms to identify chemicals of interest. Our approach allows continuous gas monitoring in simple experimental setups without the requirement of acquiring recovery transient of the sensors, thereby making the system specifically suitable for online monitoring applications.

Keywords: Chemical sensing, Reservoir computing, Gas sensors, Dynamic gas mixtures, Electronic nose

Estrada, Luis, Torres, Abel, Sarlabous, Leonardo, Fiz, Jose A., Gea, Joaquim, Martinez-Llorens, Juana, Jané, Raimon, (2014). Estimation of bilateral asynchrony between diaphragm mechanomyographic signals in patients with Chronic Obstructive Pulmonary Disease Engineering in Medicine and Biology Society (EMBC) 36th Annual International Conference of the IEEE , IEEE (Chicago, USA) , 3813-3816

The aim of the present study was to measure bilateral asynchrony in patients suffering from Chronic Obstructive Pulmonary Disease (COPD) performing an incremental inspiratory load protocol. Bilateral asynchrony was estimated by the comparison of respiratory movements derived from diaphragm mechanomyographic (MMGdi) signals, acquired by means of capacitive accelerometers placed on left and right sides of the rib cage. Three methods were considered for asynchrony evaluation: Lissajous figure, Hilbert transform and Motto's algorithm. Bilateral asynchrony showed an increase at 20, 40 and 60% (values of normalized inspiratory pressure by their maximum value reached in the last inspiratory load) while the very severe group showed and increase at 20, 40, 80, and 100 % during the protocol. These increments in the phase's shift can be due to an increase of the inspiratory load along the protocol, and also as a consequence of distress and fatigue. In summary, this work evidenced the capability to estimate bilateral asynchrony in COPD patients. These preliminary results also showed that the use of capacitive accelerometers can be a suitable sensor for recording of respiratory movement and evaluation of asynchrony in COPD patients.

Keywords: Accelerometers, Diseases, Estimation, Fatigue, IP networks, Protocols, Transforms

Correa, L.S., Giraldo, B., Correa, R., Arini, P.D., Laciar, E., (2014). Estudio de la pausa espiratoria en pacientes con enfermedades obstructivas en proceso de desconexión de la ventilación mecánica IFMBE Proceedings VI Latin American Congress on Biomedical Engineering (CLAIB 2014) , Springer (Paraná, Argentina) 49, 705-708

In this work, the flow signal Expiratory Pause (EP) temporal analysis is used in 18 patients with obstructive lung diseases going through spontaneous breathing trial at weaning process. The main objective was to identify the patients who were successfully disconnected (success group: 9 patients), and those who were not (failure and reintubated group: 9 patients). A variable selection stage was done by mean group comparison and step wise variable inclusion, leading to a 3 parameters set: EP time median; cycle time mean; and median absolute deviation of the EP maxima local number. Next, this set was used in a classifier based on linear discriminant analysis, which results in 17 patients (94.4%) correctly classified, with 88.9% of specificity (Sp) and 100% of sensitivity (Se). Finally, applying the leave-one-out cross validation method, results were 88.9% of correctly classified patients (Sp=77.8% and Se=100%). In conclusion, the proposed parameters showed a good performance and could be used to help therapists to wean patients with obstructive diseases.

Keywords: Chronic Obstructive Pulmonary Disease (COPD), Weaning, Mechanical ventilation, Expiratory pause

Giraldo, B., Chaparro, J. A., Caminal, P., Benito, S., (2014). Estudio de la potencia de la inspiración como predictor del proceso de extubación en pacientes CASEIB Proceedings XXXII Congreso Anual de la Sociedad Española de Ingeniería Biomédica (CASEIB 2014) , Sociedad Española de Ingeniería Biomédica (Barcelona, Spain) , 1-4

La extubación de pacientes asistidos mediante ventilación mecánica sigue siendo un proceso fundamental en la práctica clínica, de especial atención en las unidades de cuidados intensivos. En este estudio se propone un nuevo índice de extubación basado en la potencia de la señal de flujo respiratorio (Pi). Se estudiaron un total de 132 pacientes sometidos al proceso de destete: 94 pacientes (GE) con resultado de éxito en la prueba, y 38 pacientes (GF) que fracasaron en el proceso de destete y tuvieron que ser deconectados al ventilador mecánico. La señal de flujo respiratorio fue procesada para obtener la potencia de la fase inspiratoria, considerando las siguientes etapas: a) detección del cruce por cero, b) detección del punto de inflexión, y c) obtención de la potencia de la señal hasta dicho punto. La detección de cruce por cero se realizó utilizando un algoritmo basado en umbrales. Los puntos de inflexión fueron marcados teniendo en cuenta el cero de la segunda derivada. La potencia de la fase inspiratoria se calculó a partir de la energía de la señal desde el cruce por cero hasta el punto de máxima inflexión. El nuevo índice fue evaluado como estimador de éxito en la extubación. Los resultados fueron analizados utilizando clasificadores como regresión logística, análisis discriminante lineal, árboles de decisión, teoría bayesiana, y máquinas de soporte vectorial. Los clasificadores Bayesianos presentaron los mejores resultados con una exactitud del 87%, y sensibilidad y especificidad de 90% y 81%, respectivamente.

Téllez, J., Herrera, S., Benito, S., Giraldo, B., (2014). Estudio del patrón respiratorio en pacientes ancianos CASEIB Proceedings XXXII Congreso Anual de la Sociedad Española de Ingeniería Biomédica (CASEIB 2014) , Sociedad Española de Ingeniería Biomédica (Barcelona, Spain) , 1-4

La clínica relacionada con los pacientes ancianos, refleja una elevada incidencia de enfermedades de origen cardíaco y respiratorio. Alteraciones en el patrón respiratorio como son la respiración periódica (PB) y la respiración Cheyne-Stokes (CSR) pueden estar relacionadas con la insuficiencia cardíaca crónica (ICC). En este estudio se propuso caracterizar estos patrones respiratorios a partir de la envolvente de la señal de flujo respiratorio, aplicando técnicas de análisis frecuencial y de tiempo-frecuencia. Se estudiaron registros de 45 pacientes ancianos (25 pacientes con patrón PB y 20 pacientes con respiración no periódica (nPB)). Se analizaron los resultados considerando todas las posibles combinaciones de tipos de patrones: pacientes con patrones PB (con y sin apnea) vs nPB, y patrones CSR vs PB, CSR vs nPB y PB vs nPB. En el análisis tiempo-frecuencia se obtuvo la mayor exactitud (76.3%) con parámetros correspondientes a la variabilidad frecuencial y la desviación del pico de potencia, al comparar pacientes con patrón respiratorio nPB vs PB. Considerando segmentos de señal de 5 minutos, la potencia de pico de modulación, la variabilidad frecuencial y los rangos intercuartílicos presentaron los mejores resultados, con una exactitud del 72.8% al comparar los tres grupos (nPB, PB y CSR), y del 74.2% al comparar patrones PB vs nPB.

Estrada, L., Torres, A., Jané, R., (2014). Evaluación de la asincronía bilateral y toracoabdominal mediante señales mecanomiográficas CASEIB Proceedings XXXII Congreso Anual de la Sociedad Española de Ingeniería Biomédica (CASEIB 2014) , Sociedad Española de Ingeniería Biomédica (Barcelona, Spain) , 1-4

Este estudio tiene como objetivo evaluar la asincronía en los compartimientos torácico y abdominal, durante la realización de un protocolo respiratorio incremental de presión. La actividad mecanomiográfica fue registrada en el tronco mediante el uso de acelerómetros colocados en la parte izquierda y derecha del tórax y del abdomen. Para extraer la baja frecuencia de las señales mecanomiograficas se utilizó un método basado en la descomposición empírica en modos. Para estudiar la asincronía entre los compartimientos estudiados se utilizaron tres métodos, basados en la figura de Lissajous, la transformada de Hilbert y el algoritmo de Motto. Se observó un aumento de la asincronía toracoabdominal, con el aumento de la carga inspiratoria. Los valores de asincronía encontrados al evaluar el lado izquierdo con el derecho tanto en el diafragma como en el abdomen fueron menores de 40°, mientras que al comparar tanto el lado izquierdo como el derecho entre el tórax y el abdomen estos exhibieron valores menores a 80°. En conclusión, este trabajo demuestra que con un aumento de la carga inspiratoria puede presentarse un aumento de asincronía entre diferentes regiones del tronco. Además, el uso de acelerómetros para el registro de la dinámica respiratoria puede llegar a ser una herramienta complementaria a las actuales como la pletismografía de inductancia respiratoria, debido a su más sencilla manipulación.

Solà, J., Fiz, J.A., Torres, A., Jané, R., (2014). Evaluación de la vía aérea superior en sujetos con SAHS mediante análisis del sonido respiratorio durante vigilia CASEIB Proceedings XXXII Congreso Anual de la Sociedad Española de Ingeniería Biomédica (CASEIB 2014) , Sociedad Española de Ingeniería Biomédica (Barcelona, Spain) , 1-4

El Síndrome de Apnea-Hipopnea del Sueño (SAHS) actualmente se diagnostica mediante la Polisomnografía (PSG), una prueba cara y costosa. Se han propuesto diversas alternativas para ayudar al cribado previo de SAHS. En estudios previos demostramos que los sujetos con SAHS se pueden identificar a partir de las frecuencias de resonancia (formantes) de la respiración nocturna. En este trabajo se extiende el estudio al sonido respiratorio registrado en vigilia. Se seleccionaron diversos ciclos de inspiración y expiración consecutivas en 23 sujetos con diversos grados de SAHS durante el estado de vigilia previo a la PSG. Mediante un modelo autoregresivo (AR) se estimaron los formantes y el área transversal (CSA) de la vía. Se observa que los formantes en determinadas bandas tienen una frecuencia mayor (p<0.04) en sujetos con SAHS levemoderado, con un Índice de Apnea-Hipopnea (AHI) menor que 30, respecto a los sujetos con SAHS severo (AHI≥30). En paralelo, el área promedio de la vía aérea en las zonas con obstrucción muestra una tendencia decreciente (r=-0.498) con la severidad de la patología. Las características de los formantes, combinadas con medidas antropométricas, permiten clasificar a los sujetos con SAHS severo con una sensibilidad (especificidad) de hasta un 84.6% (88.9%). En conclusión, el sonido respiratorio registrado durante vigilia proporciona información valiosa sobre el estado de la vía aérea superior que puede ayudar a identificar un SAHS severo.

Estrada, L., Torres, A., Garcia-Casado, J., Prats-Boluda, G., Yiyao, Ye-Lin, Jané, R., (2014). Evaluation of Laplacian diaphragm electromyographic recording in a dynamic inspiratory maneuver Engineering in Medicine and Biology Society (EMBC) 36th Annual International Conference of the IEEE , IEEE (Chicago, USA) , 2201-2204

The analysis of the electromyographic signal of the diaphragm muscle (EMGdi) can provide important information for evaluating the respiratory muscular function. The EMGdi can be recorded using surface Ag/AgCl disc electrodes in monopolar or bipolar configuration. However, these non-invasive EMGdi recordings are usually contaminated by the electrocardiographic (ECG) signal. EMGdi signal can also be noninvasively recorded using concentric ring electrodes in bipolar configuration (CRE) that estimate Laplacian surface potential. Laplacian recordings increase spatial resolution and attenuate distant bioelectric interferences, such as the ECG. Thus, the objective of this work is to compare and to evaluate CRE and traditional bipolar EMGdi recordings in a healthy subject during a dynamic inspiratory maneuver with incremental inspiratory loads. In the conducted study, it was calculated the cumulative percentage of power spectrum of EMGdi recordings to determine the signal bandwidth, and the power ratio between the EMGdi signal segments with and without cardiac activity. The results of this study suggest that EMGdi acquired with CRE electrodes is less affected by the ECG interference, achieves a wider bandwidth and a higher power ratio between segments without cardiac activity and with cardiac activity.

Keywords: Bandwidth, Electric potential, Electrocardiography, Electrodes, Interference, Laplace equations, Muscles

Martínez, D., Moreno, J., Tresanchez, M., Teixidó, M., Font, D., Pardo, A., Marco, S., Palacín, J., (2014). Experimental application of an autonomous mobile robot for gas leak detection in indoor environments 17th International Conference on Information Fusion (FUSION) , IEEE (Salamanca, Spain) , 1-6

This paper presents the experimental application of an autonomous mobile robot for gas leak detection in indoor environments. The application is focused to automatize a human-risky operation in indoor areas. The goal of the autonomous mobile robot is the localization of a toxic gas leak source. So, the mobile robot has to explore the whole area and perform an auto-localization procedure based on a SLAM method and a LIDAR sensor. The mobile robot measures gas concentration by using a photoionization detector. The experimentation was realized in a large indoor environment in a university facility with a simulated gas leak source. The combination of the results from the auto-localization procedure with the information of the sensors allows the estimation of the gas leak source location.

Malandrino, A., Lacroix, D., Noailly, J., (2014). Exploring the link between mechanical load and cell death in the invertebral disc: A theoretical study of mechno-regulated hypermetabolism and metabolic transport Bone & Joint Journal Orthopaedic Proceedings Supplement 8th Combined Meeting Of Orthopaedic Research Societies (CORS) , The British Editorial Society of Bone & Joint Surgery (Venice, Italy) 96-B, (Supp. 11), 18

Summary Statement An organ culture experiment was simulated to explore the mechanisms that can link cell death to mechanical overload in the intervertebral disc. Coupling cell nutrition and tissue deformations led to altered metabolic transport that largely explained cell viability measurements.Introduction Part of intervertebral disc (IVD) maintenance relies on limited nutrient availability to the cells and on mechanical loads, but effective implication of these two factors is difficult to quantify. Theoretical models have helped to understand the link between solute transport and cell nutrition in deforming IVD, but omitted the direct link between tissue mechanics and cell metabolism. Hence, we explored numerically the relation between disc mechanics and cell death in relation to an organ culture experiment.Methods A finite element model of a caudal bovine IVD was created to reproduce an organ culture experiment. All subtissues were modelled, and coupled to cell metabolism in two ways: (i) mechanical strains and metabolic reactions were simply coupled to the diffusions of oxygen, lactate and glucose through a mechano-transport algorithm (IND model). (ii), a hypermetabolism model based on in vitro data involved a 30% increase in glucose consumption by the cells, activated either as a Step or as a Gaussian function over 15% strain (DIR model). Exponential decays of cell density occurred below 0.5 mM of glucose and/or below pH 6.78. Concentrations of 21 kPa oxygen and 4.5 mM glucose were imposed at the boundary, and a combination of 0.2 MPa compression and 10° bending was applied over 7 days.Results The highest hypermetabolic response was given by the Step activation. For all models, cell death mostly occurred in the compressed area of the flexed IVD, and steady-state cell viability was reached in about two days of load. In the outer annulus fibrosus (AF), the DIR model with Step activation led to increased cell death, in line with the cell viability measured in vitro. In the inner AF, all cell viability results matched the reported measurements.Discussion/Conclusion This study focused on elucidating the links between mechanical stimulation and cell survival in the IVD, and simulation of nutrition issues allowed reproducing the results of an organ culture experiment. Results suggest that mechano-regulated metabolism can play a significant role in the nutrition-related cell death. Truly, the IND model gave both low glucose and low pH, and altered metabolic transport represented the main cell death mechanism. Yet, the role of hypermetabolism was increased nearby the nutrient supply at the outer AF, meaning that cell death could occur, even in regions where nutrient supply seems ensured by short diffusion distances. Though further mechanistic developments must be considered, this novel mechano-regulated metabolism model permits mechano-transport models to be used to explore important interactions between tissue biophysics and multiphysics. In particular, the extracellular matrix degradation along degeneration and cell death can be coupled to the poromechanical parameters introduced, e.g. initial porosity and osmotic pressure values that largely depend on the proteoglycan concentration.

Berges, E., Casals, A., (2014). Identification of non-technical roadblocks in cognitive robotic surgery From Exo-Skeletons to Surgical Robots The Hamlyn Symposium on Medical Robotics , The Royal Geographical Society and Imperial College London (London, UK) , 3-4

Many challenges are still to be overcome, before European robotic community reaches full clearance on how to commercialize surgical robots, even more if they are endowed with some cognitive features. Besides the technical difficulties of developing such devices from the engineering and medical point of view, firm obstacles are also present regarding the social, legal and ethical implications that will arise, once this technology is available and ready to use for surgical purposes. This presents the results reached by the coordinated action Eurosurge to face non-technical roadblocks foreseen in future robotic surgery, including recommendations for the robotic, legal and medical communities involved in this field.

Solà, J., Fiz, J. A., Torres, A., Jané, R., (2014). Identification of Obstructive Sleep Apnea patients from tracheal breath sound analysis during wakefulness in polysomnographic studies Engineering in Medicine and Biology Society (EMBC) 36th Annual International Conference of the IEEE , IEEE (Chicago, USA) , 4232-4235

Obstructive Sleep Apnea (OSA) is currently diagnosed by a full nocturnal polysomnography (PSG), a very expensive and time-consuming method. In previous studies we were able to distinguish patients with OSA through formant frequencies of breath sound during sleep. In this study we aimed at identifying OSA patients from breath sound analysis during wakefulness. The respiratory sound was acquired by a tracheal microphone simultaneously to PSG recordings. We selected several cycles of consecutive inspiration and exhalation episodes in 10 mild-moderate (AHI<;30) and 13 severe (AHI>=30) OSA patients during their wake state before getting asleep. Each episode's formant frequencies were estimated by linear predictive coding. We studied several formant features, as well as their variability, in consecutive inspiration and exhalation episodes. In most subjects formant frequencies were similar during inspiration and exhalation. Formant features in some specific frequency band were significantly different in mild OSA as compared to severe OSA patients, and showed a decreasing correlation with OSA severity. These formant characteristics, in combination with some anthropometric measures, allowed the classification of OSA subjects between mild-moderate and severe groups with sensitivity (specificity) up to 88.9% (84.6%) and accuracy up to 86.4%. In conclusion, the information provided by formant frequencies of tracheal breath sound recorded during wakefulness may allow identifying subjects with severe OSA.

Keywords: Correlation, Databases, Sensitivity, Sleep apnea, Speech, Synchronization

Aviles, A. I., Sobrevilla, P., Casals, A., (2014). In search of robustness and efficiency via l1− and l2− regularized optimization for physiological motion compensation International Journal of Medical, Health, Pharmaceutical and Biomedical Engineering XII International Conference on Agricultural, Biological and Ecosystems Sciences (ICABES 2014) , World Academy of Science, Engineering and Technology (WASET) (Geneva, Switzerland) 8, 501-506

Compensating physiological motion in the context of minimally invasive cardiac surgery has become an attractive issue since it outperforms traditional cardiac procedures offering remarkable benefits. Owing to space restrictions, computer vision techniques have proven to be the most practical and suitable solution. However, the lack of robustness and efficiency of existing methods make physiological motion compensation an open and challenging problem. This work focusses on increasing robustness and efficiency via exploration of the classes of l1- and l2-regularized optimization, emphasizing the use of explicit regularization. Both approaches are based on natural features of the heart using intensity information. Results pointed out the l1-regularized optimization class as the best since it offered the shortest computational cost, the smallest average error and it proved to work even under complex deformations.

Keywords: Motion Compensation, Optimization, Regularization, Beating Heart Surgery, Ill-posed problem

Chaparro, J. A., Giraldo, B. F., (2014). Power index of the inspiratory flow signal as a predictor of weaning in intensive care units Engineering in Medicine and Biology Society (EMBC) 36th Annual International Conference of the IEEE , IEEE (Chicago, USA) , 78-81

Disconnection from mechanical ventilation, called the weaning process, is an additional difficulty in the management of patients in intensive care units (ICU). Unnecessary delays in the discontinuation process and a weaning trial that is undertaken too early are undesirable. In this study, we propose an extubation index based on the power of the respiratory flow signal (Pi). A total of 132 patients on weaning trials were studied: 94 patients with successful trials (group S) and 38 patients who failed to maintain spontaneous breathing and were reconnected (group F). The respiratory flow signals were processed considering the following three stages: a) zero crossing detection of the inspiratory phase, b) inflection point detection of the flow curve during the inspiratory phase, and c) calculation of the signal power on the time instant indicated by the inflection point. The zero crossing detection was performed using an algorithm based on thresholds. The inflection points were marked considering the zero crossing of the second derivative. Finally, the inspiratory power was calculated from the energy contained over the finite time interval (between the instant of zero crossing and the inflection point). The performance of this parameter was evaluated using the following classifiers: logistic regression, linear discriminant analysis, the classification and regression tree, Naive Bayes, and the support vector machine. The best results were obtained using the Bayesian classifier, which had an accuracy, sensitivity and specificity of 87%, 90% and 81% respectively.

Keywords: Bayes methods, Bayesian classifier, Indexes, Logistics, Niobium, Regression tree analysis, Support vector machines, Ventilation

Martínez, D., Moreno, J., Tresanchez, M., Teixidó, M., Palací, J., Marco, S., (2014). Preliminary results on measuring gas and wind intensity with a mobile robot in an indoor area ETFA 2014 19th IEEE International Conference on Emerging Technologies and Factory Automation , IEEE (Barcelona, Spain) , 1-5

This paper presents the preliminary results obtained when using a mobile robot to measure gas and wind intensity in an indoor area by means of several attached sensors such as a LIDAR, an e-nose, and an anemometer. The robot navigation was performed by means of a random path planning and the robot self location was performed by means of an SLAM procedure. This paper presents the first preliminary results obtained in a set of measurement experiments. In all cases, the indoor area has a fixed artificial simulated airflow and an induced gas leak source placed in different locations of the experimentation area. Results have shown different gas diffusion profiles in the different experiments performed.

Aviles, A. I., Marban, A., Sobrevilla, P., Fernandez, J., Casals, A., (2014). A recurrent neural network approach for 3D vision-based force estimation IPTA 2014 4th International Conference on Image Processing Theory, Tools and Applications (IPTA) , IEEE (Paris, France) , 1-6

Robotic-assisted minimally invasive surgery has demonstrated its benefits in comparison with traditional procedures. However, one of the major drawbacks of current robotic system approaches is the lack of force feedback. Apart from space restrictions, the main problems of using force sensors are their high cost and the biocompatibility. In this work a proposal based on Vision Based Force Measurement is presented, in which the deformation mapping of the tissue is obtained using the `2−Regularized Optimization class, and the force is estimated via a recurrent neural network that has as inputs the kinematic variables and the deformation mapping. Moreover, the capability of RNN for predicting time series is used in order to deal with tool occlusions. The highlights of this proposal, according to the results, are: knowledge of material properties are not necessary, there is no need of adding extra sensors and a good trade-off between accuracy and efficiency has been achieved.

Keywords: Force estimation, Regularized optimization, Deformable tracking, Recurrent neural network

Sarlabous, L., Torres, A., Fiz, J.A., Gea, J., Martínez-Llorens, J.M., Jané, R., (2014). Relación entre la presión inspiratoria pico y la activación mecánica de los músculos inspiratorios durante respiración tranquila en pacientes con EPOC CASEIB Proceedings XXXII Congreso Anual de la Sociedad Española de Ingeniería Biomédica (CASEIB 2014) , Sociedad Española de Ingeniería Biomédica (Barcelona, Spain) , 1-4

En la enfermedad pulmonar obstructiva crónica (EPOC) la fuerza muscular inspiratoria (FMI) y la eficiencia mecánica de los músculos inspiratorios (EMMI) podrían verse reducidas como consecuencia de la hiperinsuflación. En este trabajo se registraron la presión inspiratoria en boca (PIpico) y la activación mecánica de los músculos inspiratorios en 10 pacientes EPOC severos y muy severos, durante respiración tranquila. Para determinar la activación mecánica de los músculos inspiratorios se empleó la señal mecanomiográfica diafragmática: MMGdi. La amplitud de la señal MMGdi fue estimada a través de índices lineales (ARV: valor rectificado medio) y no lineales (MLZ: Lempel-Ziv multiestado, y fSampEn: entropía muestral con valores de tolerancia fijos). Nuestra hipótesis es que el ratio entre PIpico, que refleja la FMI, y la amplitud de la señal MMGdi constituye una expresión de la EMMI. Los resultados obtenidos muestran ligeras diferencias entre la PIpico registrada en EPOC severos y muy severos, así como una correlación débil a moderada con los parámetros de función pulmonar y los índices estudiados. Sin embargo, mientras mayor es el grado de severidad (que supone un mayor grado de hiperinsuflación) mayor es el nivel de activación mecánica de los músculos inspiratorios. La activación mecánica de los músculos inspiratorios y la EMMI estimadas mediante MLZ estuvieron mejor correlacionadas con la función pulmonar que ARV y fSampEn. Por consiguiente, la estimación de la actividad mecánica del diafragma mediante el MLZ de la señal MMGdi podría mejorar la estimación no invasiva de la FMI y la EMMI, incluso para niveles muy bajos de esfuerzo inspiratorio.

Estrada, L., Torres, A., Sarlabous, L., Fiz, J. A., Jané, R., (2014). Respiratory rate detection by empirical mode decomposition method applied to diaphragm mechanomyographic signals Engineering in Medicine and Biology Society (EMBC) 36th Annual International Conference of the IEEE , IEEE (Chicago, USA) , 3204-3207

Non-invasive evaluation of respiratory activity is an area of increasing research interest, resulting in the appearance of new monitoring techniques, ones of these being based on the analysis of the diaphragm mechanomyographic (MMGdi) signal. The MMGdi signal can be decomposed into two parts: (1) a high frequency activity corresponding to lateral vibration of respiratory muscles, and (2) a low frequency activity related to excursion of the thoracic cage. The purpose of this study was to apply the empirical mode decomposition (EMD) method to obtain the low frequency of MMGdi signal and selecting the intrinsic mode functions related to the respiratory movement. With this intention, MMGdi signals were acquired from a healthy subject, during an incremental load respiratory test, by means of two capacitive accelerometers located at left and right sides of rib cage. Subsequently, both signals were combined to obtain a new signal which contains the contribution of both sides of thoracic cage. Respiratory rate (RR) measured from the mechanical activity (RRMmg) was compared with that measured from inspiratory pressure signal (RRP). Results showed a Pearson's correlation coefficient (r = 0.87) and a good agreement (mean bias = -0.21 with lower and upper limits of -2.33 and 1.89 breaths per minute, respectively) between RRmmg and RRP measurements. In conclusion, this study suggests that RR can be estimated using EMD for extracting respiratory movement from low mechanical activity, during an inspiratory test protocol.

Keywords: Accelerometers, Band-pass filters, Biomedical measurement, Empirical mode decomposition, Estimation, IP networks, Muscles

Fernandez, L., Gutierrez-Galvez, A., Marco, S., (2014). Robustness to sensor damage of a highly redundant gas sensor array Procedia Engineering 28th European Conference on Solid-State Transducers (EUROSENSORS 2014) , Eurosensors (Brescia, Italy) 87, 851-854

Abstract In this paper we study the role of redundant sensory information to prevent the performance degradation of a chemical sensor array as the number of faulty sensors increases. The large amount of sensing conditions with two different types of redundancy provided by our sensor array makes possible a comprehensive experimental study. Particularly, our sensor array is composed of 8 different types of commercial MOX sensors modulated in temperature with two redundancy levels: 1) 12 replicates of each sensor type for a total of 96 sensors, and 2) measurements using 16 load resistors per sensors for a total of 1536 redundant measures per second. The system is trained to identify ethanol, acetone and butanone using a PCA-LDA model. Test set samples are corrupted by means of three different simulated types of faults. To evaluate the tolerance of the array against sensor failure, the Fisher Score is used as a figure of merit for the corrupted test set samples projected on the PCA-LDA model.

Keywords: Gas ensor arrays, sensor redundancy, MOX sensors, large sensor arrays.

Rigat, L., Elizalde, A., Del Portillo, H. A., Homs-Corbera, A., Samitier, J., (2014). Selective cell culturing step using laminar co-flow to enhance cell culture in splenon-on-a-chip biomimetic platform MicroTAS 2014 18th International Conference on Miniaturized Systems for Chemistry and Life Sciences , CBMS (San Antonio, USA) , 769-771

Constant evolution and improvements on areas such as tissue engineering, microfluidics and nanotechnology have made it possible to partially close the gap between conventional in vitro cell cultures and animal model-based studies. A step forward in this field concerns organ-on-chip technologies, capable of reproducing the most relevant physiological features of an organ in a microfluidic platform. In this work we have exploited the capabilities of laminar co-flow inside our biomimetic platform, the splenon-on-a-chip, in order to enhance cell culture inside its channels to better mimic the spleen's environment. © 14CBMS.

Keywords: Cell culture, Co-flow, Laminar flow, Organ-on-a-chip, Spleen

López Picazo, M., Solà, J., Fiz, J.A., Jané, R., (2014). Sincronización de sistemas de monitorización para el estudio de ronquidos en las distintas fases del sueño en pacientes con SAHS CASEIB Proceedings XXXII Congreso Anual de la Sociedad Española de Ingeniería Biomédica (CASEIB 2014) , Sociedad Española de Ingeniería Biomédica (Barcelona, Spain) , 1-4

El Síndrome de Apnea-Hipopnea del Sueño (SAHS) tiene una incidencia en sujetos de edad media, del 2-4% en mujeres y 4- 6% en hombres, además de múltiples consecuencias asociadas. Sin embargo, a pesar de su prevalencia, menos de un 10% de la población con este síndrome es diagnosticada. Con el objetivo de identificar qué señales debería emplear un futuro método de diagnóstico para pacientes con sospecha de SAHS más eficaz que los actuales, se sugiere un estudio en detalle de los eventos respiratorios que tienen lugar durante la noche. Para ello se parte de los estudios de monitorización del sueño realizados a pacientes con síntomas de SAHS mediante dos plataformas comerciales distintas. En primer lugar, los registros procedentes de dichos estudios se combinan y sincronizan temporalmente de una forma precisa y robusta. Una vez llevada y sincronizada toda la información a una plataforma común, el presente estudio se centra en la relación del SAHS con una nueva información, el roncograma. El concograma permite estudiar la evolución de los ronquidos según la fase de sueño. Aplicando esta medida sobre nuestra base de datos observamos como el tiempo en fase de vigilia, el tiempo en fase REM o la densidad de ronquidos en fases ligeras presentan diferencias estadísticamente significativas para pacientes con distinta severidad de SAHS.

Urra, O., Casals, A., Jané, R., (2014). Study of synergy patterns during the execution of stroke rehabilitation exercises CASEIB Proceedings XXXII Congreso Anual de la Sociedad Española de Ingeniería Biomédica (CASEIB 2014) , Sociedad Española de Ingeniería Biomédica (Barcelona, Spain) , 1-4

Stroke is a leading cause of disability, being motor impairments its major consequence. Despite rehabilitation, more than 60% of the patients report upper-limb motor dysfunction. The design of novel rehabilitation strategies requires objective measures to assess motor impairment and recovery. In a previous study, we proposed to use the synergy components of the unaffected limb as a reference to be targeted by rehabilitation, since they are proven to explain healthy motor control and to be altered after stroke. We demonstrated that healthy subjects have very similar control structures (synergies and activation vectors) in their right and left arms. Here, we investigate the existence of movement-specific control strategies. To do so, we analyze the inter-subject similarity of the healthy control structure in twelve common stroke rehabilitation exercises and we evidence that motor control is movement specific and generalizes across different subjects and their limbs. However, the similarity degree depends on the movement, suggesting that novel training protocols should purposely choose the rehabilitation exercises to ensure maximum control similarity with the reference pattern.

Urra, O., Casals, A., Jané, R., (2014). Synergy analysis as a tool to design and assess an effective stroke rehabilitation Engineering in Medicine and Biology Society (EMBC) 36th Annual International Conference of the IEEE , IEEE (Chicago, USA) , 3550-3553

The poor rehabilitation success rate, including the cases of ineffective and detrimental adaptations, make stroke a leading cause of disability. Thus, it is essential to recognize the mechanisms driving healthy motor recovery to improve such rate. Stroke alters the Synergy Architecture (SA), the modular muscle control system. So SA analysis may constitute a powerful tool to design and assess rehabilitation procedures. However, current impairment scales do not consider the patient's neuromuscular state. To gain insights into this hypothesis, we recorded multiple myoelectric signals from upper-limb muscles, in healthy subjects, while executing a set of common rehabilitation exercises. We found that SA reveals optimized motor control strategies and the positive effects of the use of visual feedback (VF) on motor control. Furthermore we demonstrate that the right and left arm's SA share the basic structure within the same subject, so we propose using the unaffected limb's SA as a reference motion pattern to be reached through rehabilitation.

Keywords: Bars, Electromyography, Motor drives, Neuromuscular, Vectors, Visualization

Vaca, R., Aranda, J., (2014). Triangular-fan-based algorithm for computing the closure conditions of planar linkages Advanced Numerical Methods IV 11th World Congress on Computational Mechanics (WCCM XI) 5th European Conference on Computational Mechanics (ECCM V) 6th European Conference on Computational Fluid Dynamics (ECFD VI) , CIMNE (Barcelona, Spain) , 1-2

The position analysis of a planar mechanism is based on obtaining the roots of its characteristic polynomial. In general, this polynomial is the result of a system of kinematic equations which they are derived from closure condition of the mechanism, widely known as independent kinematic loop equations or loop closure equations . This way of solving the position analysis of kinematic chains introduces complex variable eliminations, and in general trigonometric substitutions. Recently, the use of methods based on bilateration to solve the position analysis, has been shown to avoid these variable eliminations and trigonometric substitutions in planar mechanism. In this work it is shown how this method based on bilateration can be use to automatically generate closure conditions of a planar mechanism.

Keywords: Position analysis, Bilateration, Rigidity, Isomorphism, Kinematic

Aviles, A. I., Sobrevilla, P., Casals, A., (2014). Unconstrained ℓ1 — regularized minimization with interpolated transformations for heart motion compensation Engineering in Medicine and Biology Society (EMBC) 36th Annual International Conference of the IEEE , IEEE (Chicago, USA) , 5109-5112

Motion compensation constitutes a challenging issue in minimally invasive beating heart surgery. Since the zone to be repaired has a dynamic behaviour, precision and surgeon's dexterity decrease. In order to solve this problem, various proposals have been presented using ℓ2-norm. However, as they present some limitations in terms of robustness and efficiency, motion compensation is still considered an open problem. In this work, a solution based on the class of ℓ1 Regularized Optimization is proposed. It has been selected due to its mathematical properties and practical benefits. In particular, deformation is characterized by cubic B-splines since they offer an excellent balance between computational cost and accuracy. Moreover, due to the non-differentiability of the functional, the logarithmic barrier function is used for generating a standard optimization problem. Results have provided a very good tradeoff between accuracy and efficiency, indicating the potential of the proposed approach and proving its stability even under complex deformations.

Lozano, M., Fiz, J. A., Jané, R., (2014). Analysis of normal and continuous adventitious sounds for the assessment of asthma IFMBE Proceedings XIII Mediterranean Conference on Medical and Biological Engineering and Computing 2013 (ed. Roa Romero, Laura M.), Springer International Publishing (London, UK) 41, 981-984

Assessment of asthma is a difficult procedure which is based on the correlation of multiple factors. A major component in the diagnosis of asthma is the assessment of BD response, which is performed by traditional spirometry. In this context, the analysis of respiratory sounds (RS) provides relevant and complementary information about the function of the respiratory system. In particular, continuous adventitious sounds (CAS), such as wheezes, contribute to assess the severity of patients with obstructive diseases. On the other hand, the intensity of normal RS is dependent on airflow level and, therefore, it changes depending on the level of obstruction. This study proposes a new approach to RS analysis for the assessment of asthmatic patients, by combining the quantification of CAS and the analysis of the changes in the normal sound intensity-airflow relationship. According to results obtained from three patients with different characteristics, the proposed technique seems more sensitive and promising for the assessment of asthma.

Keywords: Asthma, Bronchodilator response, Continuous adventitious sound, Respiratory sound intensity, Wheezes

Giraldo, B. F., Calvo, A., Martínez, B., Arcentales, A., Jané, R., Benito, S., (2014). Blood pressure variability analysis in supine and sitting position of healthy subjects IFMBE Proceedings XIII Mediterranean Conference on Medical and Biological Engineering and Computing 2013 (ed. Roa Romero, Laura M.), Springer International Publishing (London, UK) 41, 1021-1024

Blood pressure carries a great deal of information about people’s physical attributes. We analyzed the blood pressure signal in healthy subjects considering two positions, supine and sitting. 44 healthy subjects were studied. Parameters extracted from the blood pressure signal, related to time and frequency domain were used to compare the effect of postural position between supine and sitting. In time domain analysis, the time systolic interval and the time of blood pressure interval were higher in supine than in sitting position (p = 0.001 in both case). Parameters related to frequency peak, interquartile range, in frequency domain presented statistically significant difference (p < 0.0005 in both case). The blood pressure variability parameters presented smaller values in supine than in sitting position (p < 0.0005). In general, the position change of supine to sitting produces an increment in the pressure gradient inside heart, reflected in the blood pressure variability.

Keywords: Blood pressure variability, Systolic time intervals, Diastolic time intervals

Pérez-Amodio, Soledad, Engel, Elisabeth, (2014). Bone biology and Regeneration Bio-Ceramics with Clinical Applications (ed. Vallet-Regí, M.), John Wiley & Sons, Ltd (Chichester, UK) , 315-342

Each bone of the skeleton constantly undergoes modeling during life to help it to adapt to changing biomechanical forces as well as remodeling to remove old bone and replace it with new, mechanically stronger bone to help preserve bone strength. Bone remodeling involves the removal of mineralized bone by osteoclasts, followed by the formation of bone matrix through the osteoblasts that subsequently become mineralized. All these assets make bone a suitable model for regeneration. Bone tissue can be grossly divided into inorganic mineral material (mostly HA), and organic material from cells and the extracellular matrix. This chapter outlines some of the bone diseases such as osteoporosis and Paget's disease. Bone can be considered as a biphasic composite material, with two phases: one the mineral and the other collagen. This combination confers better mechanical properties on the tissue than each component itself.

Keywords: Bone biology, Bone cells, Bone diseases, Bone extracellular matrix, Bone mechanics, Bone remodeling, Bone tissue regeneration, Skeleton

Torres, A., Fiz, J. A., Jané, R., (2014). Cancellation of cardiac interference in diaphragm EMG signals using an estimate of ECG reference signal IFMBE Proceedings XIII Mediterranean Conference on Medical and Biological Engineering and Computing 2013 (ed. Roa Romero, Laura M.), Springer International Publishing (London, UK) 41, 1000-1004

The analysis of the electromyographic signal of the diaphragm muscle (EMGdi) can provide important information in order to evaluate the respiratory muscular function. However, EMGdi signals are usually contaminated by the electrocardiographic (ECG) signal. An adaptive noise cancellation (ANC) based on event-synchronous cancellation can be used to reduce the ECG interference in the recorded EMGdi activity. In this paper, it is proposed an ANC scheme for cancelling the ECG interference in EMGdi signals using only the EMGdi signal (without acquiring the ECG signal). In this case the detection of the QRS complex has been performed directly in the EMGdi signal, and the ANC algorithm must be robust to false or missing QRS detections. Furthermore, an automatic criterion to select the adaptive constant of the LMS algorithm has been proposed (

Keywords: Adaptive Canceller, EMG, Diaphragm muscle

Castaño, Oscar, Planell, Josep A., (2014). Cements Bio-Ceramics with Clinical Applications (ed. Vallet-Regí, M.), John Wiley & Sons, Ltd (Chichester, UK) , 193-247

Calcium phosphate cements (CPCs) were meant to produce hydroxyapatite (HA), which is the calcium phosphate that usually results when the cements are mixed with or immersed in aqueous media. The golden age of CPCs was in the late 1990s and the beginning of the 21st century, when they were presented as promising bone substitutes and drug delivery systems. The different reactions that take part in the cement self-setting process depend on many experimental factors – the composition of the cement, the stability of the different components, pH, liquid-to-powder ratio (LPR), and temperature, among others. CPCs have demonstrated fair efficiency for bone regeneration. Cements have gradually been embraced in the wider field of composites by hybridizing their compositions in order that they may adapt to the new trends.

Keywords: Calcium phosphate cements (CPCs), Cements, Hydroxyapatite (HA), Liquid-to-powder ratio (LPR)

Campos, Jordi, Laporte, Enric, Gili, Gabriel, Peñas, Carlos, Casals, Alicia, Amat, Josep, (2014). Characterization of anastomosis techniques for robot assisted surgery IFMBE Proceedings XIII Mediterranean Conference on Medical and Biological Engineering and Computing 2013 (ed. Roa Romero, Laura M.), Springer International Publishing (London, UK) 41, 109-112

A connection between two vessels or other tubular structures is known as anastomosis, one of the most common procedures in its field but, at the same time, one of the most complex suture-based techniques. This procedure requires not only a lot of skill and dexterity but also a lot of attention and plenty of concentration from the surgeon. This makes many of the actions to be performed irregularly, exposing the patient to human error resulting from the monotony. On the other hand, the field of robotics has earned itself a place in medicine, especially as assistants during a surgical intervention. Even so, medical robotics is quite young and still has not done much in the field of vessel anastomosis. Therefore, this paper presents a preliminary study of the most common suturing techniques, taking into account their typology and performance, within all the possible anastomosis procedures known. Subsequently, a detailed study of workflow and actions during an anastomosis is made, obtaining a diagram for each of the suturing techniques studied. This allows analyzing all procedures and to create a tool to find those actions and repeated tasks and/or common in all of them, indicating which of these are potential candidates for an automation study. This preliminary work focuses on finding where robotics can help to avoid rutinary tasks, which can be learned in a mechanical level and therefore, relatively easy to be automated using a robotic system or to assist the surgeon in certain tasks that need a lot of skill and attention.

Keywords: Suture, Robot Assisted Surgery, Robot Knotting

Noailly, J., Malandrino, A., Galbusera, F., Jin, Zhongmin, (2014). Computational modelling of spinal implants Computational Modelling of Biomechanics and Biotribology in the Musculoskeletal System (ed. Jin, Z.), Woodhead Publishing (Cambridge, UK) Biomaterials and Tissues, 447-484

This chapter focuses on the use of the finite element method in the design and exploration of spinal implants. Following an introduction to biomechanical alterations of the spine in disease and to spine finite element modelling, focus is placed on different models developed for spine treatment simulations. Despite the hindrance of working thorough representations of in vivo situations, predictions of load transfer within both the implants and the tissues simulated allow improved interpretations of known clinical outcomes, and permit the educated design of new implants. The potential of probabilistic modelling is also discussed in relation to model validation and patient-specific analyses. Finally, the latest developments in the multiphysical modelling of intervertebral discs are presented, revealing a strong potential for the study of implant-based strategies that aim to restore the functional biophysics of the spine.

Keywords: Spinal implant, Finite element modelling, Spine surgery, Spine biomechanics, Tissue mechanobiology

Berges, E., Casals, A., (2014). Considering civil liability as a safety criteria for cognitive surgical robots IFMBE Proceedings XIII Mediterranean Conference on Medical and Biological Engineering and Computing 2013 (ed. Roa Romero, Laura M.), Springer International Publishing (London, UK) 41, 113-116

One of the challenges of the robotics community is to develop robots that behave more and more autonomously. Therefore, it is necessary to establish new design criteria, as well as more complex methodologies supporting the analysis of associated risks. The procedure described in this paper includes civil liability as an additional criterion to validate the safety of a surgical robot. In order to understand the concept, a methodology is presented through the description of a simple case. This work aims to establish the basis for a further implementation.

Keywords: Design methodology, Product development, Product liability, Safety, Robotic surgery, Cognitive robotics

Oliva, A. M., Homs, A., Torrents, E., Juarez, A., Samitier, J., (2014). Effect of electric field and temperature in E.Coli viability IFMBE Proceedings XIII Mediterranean Conference on Medical and Biological Engineering and Computing 2013 (ed. Roa Romero, Laura M.), Springer (Seville, Spain) 41, 1833-1836

Electromagnetic Fields are increasingly used to manipulate bacteria. However, there is no systematic and definitive study on how the different electric parameters change bacteria viability. Here we present preliminary data on the effect of electric field intensity and temperature applica- tion. E. Coli colonies have been exposed to different voltages at 1MHz during 5 minutes by means of a custom-made micro- fluidic device. Results show that E.Coli survival rate is already reduced by applying field intensities as low as 220V/cm during 5 minutes. The use of stronger fields resulted in death rates increase also. Viability of survived bacteria was maintained. On the other hand, temperature has shown a synergistic effect with voltage. When temperature is increased results seem to indicate stronger sensitivity of cells to the electric field. It is necessary to continue studying the contribution of other para- meters as intensity, time, frequency or concentration, to study further synergies.

Keywords: E. Coli, Electromagnetic Field, Temperature, Viability

Lambrecht, Stefan, Urra, Oiane, Grosu, Svetlana, Pérez, Soraya, (2014). Emerging rehabilitation in cerebral palsy Biosystems & Biorobotics Emerging Therapies in Neurorehabilitation (ed. Pons, José L., Torricelli, Diego), Springer Berlin Heidelberg (London, UK) 4, 23-49

Cerebral Palsy (CP) is the most frequent disability affecting children. Although the effects of CP are diverse this chapter focuses on the impaired motor control of children suffering from spastic diplegia, particularly in the lower limb. The chapter collects the most relevant techniques that are used or might be useful to overcome the current limitations existing in the diagnosis and rehabilitation of CP. Special emphasis is placed on the role that emerging technologies can play in this field. Knowing in advance the type and site of brain injury could assist the clinician in selecting the appropriate therapy. In this context, neuroimaging techniques are being recommended as an evaluation tool in children with CP; we describe a variety of imaging technologies such as Magnetic Resonance Imaging (MRI), Diffusion Tensor Imaging (DTI), etc. But creating new knowledge in itself is not enough; there must be a transfer from progress through research to advances in the clinical field. The classic therapeutic approach of CP thus hampers the optimal rehabilitation of the targeted component. Traditional therapies may be optimized if complemented with treatments. We try to collect a wide range of emerging technologies and provide some criteria to select the adequate technology based on the characteristics of the neurological injury. For example, exoskeleton based over-ground gait training is suggested to be more effective than treadmill-based gait training. So, we suggest a new point of view combining different technologies in order to provide the foundations of a rational design of the individual rehabilitation strategy.

Keywords: Cerebral palsy, Robotics, Neurostimulation, Neuroimaging, Myoelectric signals

Urra, O., Casals, A., Jané, R., (2014). Evaluating spatial characteristics of upper-limb movements from EMG signals IFMBE Proceedings XIII Mediterranean Conference on Medical and Biological Engineering and Computing 2013 (ed. Roa Romero, Laura M.), Springer International Publishing (London, UK) 41, 1795-1798

Stroke is a major cause of disability, usually causing hemiplegic damage on the motor abilities of the patient. Stroke rehabilitation seeks restoring normal motion on the affected limb. However, normality’ of movements is usually assessed by clinical and functional tests, without considering how the motor system responds to therapy. We hypothesized that electromyographic (EMG) recordings could provide useful information for evaluating the outcome of rehabilitation from a neuromuscular perspective. Four healthy subjects were asked to perform 14 different functional movements simulating the action of reaching over a table. Each movement was defined according to the starting and target positions that the subject had to connect using linear trajectories. Bipolar recordings of EMG signals were taken from biceps and triceps muscles, and spectral and temporal characteristics were extracted for each movement. Using pattern recognition techniques we found that only two EMG channels were sufficient to accurately determine the spatial characteristics of motor activity: movement direction, length and execution zone. Our results suggest that muscles may fire in a patterned way depending on the specific characteristics of the movement and that EMG signals may codify such detailed information. These findings may be of great value to quantitatively assess post-stroke rehabilitation and to compare the neuromuscular activity of the affected and unaffected limbs, from a physiological perspective. Furthermore, disturbed movements could be characterized in terms of the muscle function to identify, which is the spatial characteristic that fails, e.g. movement direction, and guide personalized rehabilitation to enhance the training of such characteristic.

Keywords: EMG, Movement spatial characteristics, Pattern recognition, Stroke rehabilitation, Upper-limb

Estrada, L., Torres, A., Garcia-Casado, J., Ye-Lin, Y., Jané, R., (2014). Evaluation of Laplacian diaphragm electromyographic recordings in a static inspiratory maneuver IFMBE Proceedings XIII Mediterranean Conference on Medical and Biological Engineering and Computing 2013 (ed. Roa Romero, Laura M.), Springer International Publishing (London, UK) 41, 977-980

Diaphragm electromyography (EMGdi) provides important information on diaphragm activity, to detect neuromuscular disorders of the most important muscle in the breathing inspiratory phase. EMGdi is habitually recorded using needles or esophageal catheters, with the implication of being invasive for patients. Surface electrodes offer an alternative for the non-invasive assessment of diaphragm activity. Ag/AgCl surface disc electrodes are used in monopolar or bipolar configuration to record EMGdi signals. On the other hand, Laplacian surface potential can be estimated by signal recording through active concentric ring electrodes. This kind of recording could reduce physiological interferences, increase the spatial selectivity and reduce orientation problems in the electrode location. The aim of this work is to compare EMGdi signals recorded simultaneously with disc electrodes in bipolar configuration and a Laplacian ring electrode over chest wall. EMGdi signal was recorded in one healthy subject during a breath hold maneuver and a static inspiratory maneuver based on Mueller’s technique. In order to estimate the covered frequency range and the degree of noise contamination in both bipolar and Laplacian EMGdi signals, the cumulative percentage of the power spectrum and the signal to noise ratio in sub-bands were determined. Furthermore, diaphragm fatigue was evaluated by means of amplitude and frequency parameters. Our findings suggest that Laplacian EMGdi recording covers a broader frequency range although with higher noise contamination compared to bipolar EMGdi recording. Finally, in Laplacian recording fatigue indexes showed a clearer trend for muscle fatigue detection and also a reduced cardiac interference, providing an alternative to bipolar recording for diaphragm fatigue studies.

Keywords: Laplacian electrode, Diaphragm muscle, Fatigue, Surface electromyography

Navajas, D., Dellacà , R. L., Farré, R., (2014). Forced oscillation technique Mechanics of Breathing (ed. Aliverti, Andrea, Pedotti, Antonio), Springer-Verlag Mailand New Insights from New Technologies: Second Edition, 137-148

Forced oscillation technique (FOT) is a noninvasive approach for assessing the mechanical properties of the respiratory system. The technique is based on applying a low-amplitude pressure oscillation to the airway opening and computing respiratory impedance defined as the complex ratio of oscillatory pressure and flow. Impedance data are interpreted in terms of mechanical models of the respiratory system. Common clinical applications of FOT include assessment of airflow obstruction in patients with asthma and chronic obstructive pulmonary disease and airway responsiveness. New areas of interest are monitoring of airway patency in sleep and noninvasive mechanical ventilation.

Rajasekaran, V., Aranda, J., Casals, A., (2014). Handling disturbances on planned trajectories in robotic rehabilitation therapies IFMBE Proceedings XIII Mediterranean Conference on Medical and Biological Engineering and Computing 2013 (ed. Roa Romero, Laura M.), Springer International Publishing (London, UK) 41, 85-88

Robotic rehabilitation therapies are an emerging tool in the field of Neurorehabilitation in order to achieve an effective therapeutic development in the patient. In this paper, the role of disturbances caused by muscle synergies or unpredictable effects of artificial stimulation in muscles during rehabilitation therapies is analyzed. In terms of gait assistance it is also important to maintain synchronized movements to ensure a dynamically stable gait. Although, disturbances affecting joints are corrected by a force control approach, we define two methods to ensure stability and synchronization of joint movements in the trajectory to be followed. The performance of the presented methods is evaluated in comparison with a preplanned trajectory to be followed by the patients.

Keywords: Exoskeleton, Force control, Gait assistance, Neurorobot, Trajectory planning

Marbán, Arturo, Casals, Alicia, Fernández, Josep, Amat, Josep, (2014). Haptic feedback in surgical robotics: Still a challenge Advances in Intelligent Systems and Computing ROBOT2013: First Iberian Robotics Conference (ed. Armada, Manuel A., Sanfeliu, Alberto, Ferre, Manuel), Springer International Publishing 252, 245-253

Endowing current surgical robotic systems with haptic feedback to perform minimally invasive surgery (MIS), such as laparoscopy, is still a challenge. Haptic is a feature lost in surgical teleoperated systems limiting surgeons capabilities and ability. The availability of haptics would provide important advantages to the surgeon: Improved tissue manipulation, reducing the breaking of sutures and increase the feeling of telepresence, among others. To design and develop a haptic system, the measurement of forces can be implemented based on two approaches: Direct and indirect force sensing. MIS performed with surgical robots, imposes many technical constraints to measure forces, such as: Miniaturization, need of sterilization or materials compatibility, making it necessary to rely on indirect force sensing. Based on mathematical models of the components involved in an intervention and indirect force sensing techniques, a global perspective on how to address the problem of measurement of tool-tissue interaction forces is presented.

Keywords: Surgical robotics, Haptic feedback, Indirect force sensing, Machine learning, Data fusion, Mathematical models

Rigat, L., Bernabeu, M., Elizalde, A., de Niz, M., Martin-Jaular, L., Fernandez-Becerra, C., Homs-Corbera, A., del Portillo, H. A., Samitier, J., (2014). Human splenon-on-a-chip: Design and validation of a microfluidic model resembling the interstitial slits and the close/fast and open/slow microcirculations IFMBE Proceedings XIII Mediterranean Conference on Medical and Biological Engineering and Computing 2013 (ed. Roa Romero, Laura M.), Springer (Seville, Spain) 41, 884-887

Splenomegaly, albeit variably, is a landmark of malaria infection. Due to technical and ethical constraints, however, the role of the spleen in malaria remains vastly unknown. The spleen is a complex three-dimensional branched vasculature exquisitely adapted to perform different functions containing closed/rapid and open/slow microcirculations, compartmentalized parenchyma (red pulp, white pulp and marginal zone), and sinusoidal structure forcing erythrocytes to squeeze through interstitial slits before reaching venous circulation. Taking into account these features, we have designed and developed a newfangled microfluidic device of a human splenon-on-a-chip (the minimal functional unit of the red pulp facilitating blood-filtering and destruction of malarial-infected red blood cells). Our starting point consisted in translating splenon physiology to the most similar microfluidic network, mimicking the hydrodynamic behavior of the organ, to evaluate and simulate its activities, mechanics and physiological responses and, therefore, enable us to study biological hypotheses. Different physiological features have been translated into engineering elements that can be combined to integrate a biomimetic microfluidic spleen model. The device is fabricated in polydimethylsiloxane (PDMS), a biocompatible polymer, irreversibly bonded to glass. Microfluidics analyses have confirmed that 90% of the blood circulates through a fast-flow compartment whereas the remaining 10% circulates through a slow compartment, equivalently to what has been observed in a real spleen. Moreover, erythrocytes and reticulocytes going through the slow-flow compartment squeeze at the end of it through 2μm physical constraints resembling interstitial slits to reach the closed/rapid circulation.

Keywords: Malaria, Microfluidics, Organ-on-a-chip, Spleen

Vinagre, M., Aranda, J., Casals, A., (2014). An interactive robotic system for human assistance in domestic environments Computers Helping People with Special Needs (ed. Miesenberger, K., Fels, D., Archambault, D., Pe, Zagler), Springer International Publishing 8548, 152-155

This work introduces an interactive robotic system for assistance, conceived to tackle some of the challenges that domestic environments impose. The system is organized into a network of heterogeneous components that share both physical and logical functions to perform complex tasks. It consists of several robots for object manipulation, an advanced vision system that supplies in-formation about objects in the scene and human activity, and a spatial augmented reality interface that constitutes a comfortable means for interacting with the system. A first analysis based on users' experiences confirms the importance of having a friendly user interface. The inclusion of context awareness from visual perception enriches this interface allowing the robotic system to become a flexible and proactive assistant.

Keywords: Accessibility, Activity Recognition, Ambient Intelligence, Human-Robot Interaction, Robot Assistance, Augmented reality, Complex networks, Computer vision, User interfaces, Accessibility, Activity recognition, Ambient intelligence, Domestic environments, Heterogeneous component, Interactive robotics, Robot assistance, Spatial augmented realities, Human assistance, Robotics

Aviles, A. I., Casals, A., (2014). Interpolation based deformation model for minimally invasive beating heart surgery IFMBE Proceedings XIII Mediterranean Conference on Medical and Biological Engineering and Computing 2013 (ed. Roa Romero, Laura M.), Springer International Publishing (London, UK) 41, 372-375

Heart motion compensation is a key issue in medical robotics due to the benefits that minimally invasive beating heart surgery offers over traditional cardiac surgery. Although different proposals have been presented, nowadays, there is not yet a suitable solution working in real clinical environments due to the lack of robustness of existing methods. The process of heart motion estimation required to produce the compensation actions can be tackled as a process of three iterative steps. The first based on generating a deformation model from the processing of a video sequence of the beating heart. The selection of a deformation model is crucial in the sense that it has to offer both valuable information and good computational performance. These characteristics are required when the reaction time has a significant repercussion over the system behavior, as in this case. This paper, presents a computational analysis of deformation model based on interpolation methods. In particular, wavelet and thin-plate splines are evaluated. The significance of this study relies on the fact that it is a reference starting point of reference for creating both a common framework and a robust solution. In addition, the obtained results will contribute to increase the robustness from the initial stage of the solution.

Keywords: Deformation model, Wavelets, Computer performance, Radial basis functions, Interpolation methods

Martínez, Dani, Pallejà, T., Moreno, Javier, Tresanchez, Marcel, Teixidó, M., Font, Davinia, Pardo, Antonio, Marco, Santiago, Palacín, Jordi, (2014). A mobile robot agent for gas leak source detection Advances in Intelligent Systems and Computing Trends in Practical Applications of Heterogeneous Multi-Agent Systems. The PAAMS Collection (ed. Bajo Perez, Javier, Corchado Rodríguez, Juan M., Mathieu, Philippe, Campbell, Andrew, Ortega, Alfonso, Adam, Emmanuel, Navarro, Elena M., Ahrndt, Sebastian, Moreno, Maríaa N., Julián, Vicente), Springer International Publishing 293, 19-25

This paper presents an autonomous agent for gas leak source detection. The main objective of the robot is to estimate the localization of the gas leak source in an indoor environment without any human intervention. The agent implements an SLAM procedure to scan and map the indoor area. The mobile robot samples gas concentrations with a gas and a wind sensor in order to estimate the source of the gas leak. The mobile robot agent will use the information obtained from the onboard sensors in order to define an efficient scanning path. This paper describes the measurement results obtained in a long corridor with a gas leak source placed close to a wall.

Keywords: Gas detection, Mobile robot agent, Laser sensor, Self-localization

Juanola-Feliu, Esteve, Colomer-Farrarons, Jordi, Miribel-Català, Pere, González-Piñero, Manel, Samitier, Josep, (2014). Nano-enabled implantable device for glucose monitoring Implantable Bioelectronics (ed. Katz, Evgeny), Wiley-VCH Verlag GmbH & Co. KGaA (Weinheim, Germany) , 247-263

This chapter contains sections titled: * Introduction * Biomedical Devices for In Vivo Analysis * Conclusions and Final Recommendations * References

Keywords: Technology transfer, Innovation management, Nanotechnology, Nanobiosensor, Diabetes, Biomedical device, Implantable biosensors

Urra, O., Jané, R., (2014). New sleep transition indexes for describing altered sleep in SAHS IFMBE Proceedings XIII Mediterranean Conference on Medical and Biological Engineering and Computing 2013 (ed. Roa Romero, Laura M.), Springer International Publishing (London, UK) 41, 1017-1020

Traditional Sleep Structure Indexes (TSSIs) are insufficient to identify patterns of altered sleep. TSSIs mainly account for absolute time measures, but different levels of state instability may lead to similar absolute time distribution. Therefore, sleep stability remains beyond the scope of TSSIs. However, recent studies suggest that sleep disorders may be rather influenced by a breakdown in the sleep-stage switching mechanisms. In this study, we propose a set of 11 Sleep Transition Indexes (STIs) that characterize sleep fragmentation and account for the state-stability governed by the ultradian, homeostatic and circadian rhythms. We demonstrate that most of the proposed STIs are potential markers of SAHS severity, while TSSIs are not. In addition, we provide a new framework to analyze sleep disorders from the direct perspective of sleep regulatory mechanisms. In particular, our results indicate that SAHS may be influenced by a dysregulation of homeostatic rhythms but not of ultradian or circadian rhythms.

Keywords: SAHS, Sleep Transitions, Sleep Structure, Polysomnography, Hypnogram

Aviles, AngelicaI, Casals, Alicia, (2014). On genetic algorithms optimization for heart motion compensation Advances in Intelligent Systems and Computing ROBOT2013: First Iberian Robotics Conference (ed. Armada, Manuel A., Sanfeliu, Alberto, Ferre, Manuel), Springer International Publishing 252, 237-244

Heart motion compensation is a challenging problem within medical robotics and it is still considered an open research area due to the lack of robustness. As it can be formulated as an energy minimization problem, an optimization technique is needed. The selection of an adequate method has a significant impact over the global solution. For this reason, a new methodology is presented here for solving heart motion compensation in which the central topic is oriented to increase robustness with the goal of achieving a balance between efficiency and efficacy. Particularly, genetic algorithms are used as optimization technique since they can be adapted to any real application, complex and oriented to work in real-time problems.

Keywords: Genetic Algorithms, Deformation, Stochastic Optimization, Beating Heart Surgery, Robotic Assisted Surgery

Arizmendi, C., Viviescas, J., González, H., Giraldo, B., (2014). Patients classification on weaning trials using neural networks and wavelet transform Studies in Health Technology and Informatics (ed. Mantas, J., Househ, M. S., Hasman, A.), IOS Press Volume 202, Integrating Information Technology and Management for Quality of Care, 107-110

The determination of the optimal time of the patients in weaning trial process from mechanical ventilation, between patients capable of maintaining spontaneous breathing and patients that fail to maintain spontaneous breathing, is a very important task in intensive care unit. Wavelet Transform (WT) and Neural Networks (NN) techniques were applied in order to develop a classifier for the study of patients on weaning trial process. The respiratory pattern of each patient was characterized through different time series. Genetic Algorithms (GA) and Forward Selection were used as feature selection techniques. A classification performance of 77.00±0.06% of well classified patients, was obtained using a NN and GA combination, with only 6 variables of the 14 initials.

Bautista-Barrufet, Antoni, Izquierdo-Serra, M., Gorostiza, Pau, (2014). Photoswitchable Ion Channels and Receptors Advances in Atom and Single Molecule Machines Novel Approaches for Single Molecule Activation and Detection (ed. Benfenati, Fabio, Di Fabrizio, Enzo, Torre, Vincent), Springer Berlin Heidelberg , 169-188

The development of photochromic and photoswitchable ligands for ion channels and receptors has made important contributions to optopharmacology and optogenetic pharmacology. These compounds provide new tools to study ion channel proteins and to understand their function and pathological implications. Here, we describe the design, operation, and applications of the available photoswitches, with special emphasis on ligand- and voltage-gated channels.

Casals, Alicia, Fedele, Pasquale, Marek, Tadeusz, Molfino, Rezia, Muscolo, GiovanniGerardo, Recchiuto, CarmineTommaso, (2014). A robotic suit controlled by the human brain for people suffering from quadriplegia Lecture Notes in Computer Science Towards Autonomous Robotic Systems (ed. Natraj, Ashutosh, Cameron, Stephen, Melhuish, Chris, Witkowski, Mark), Springer Berlin Heidelberg , 294-295

The authors present an introductory work for the implementation of an international cooperative project aimed at designing, developing and validating a new generation of ergonomic robotic suits, wearable by the users and controlled by the human brain. The aim of the proposers is to allow the motion of people affected by paralysis or with reduced motor abilities. Therefore, the project will focus on the fusion between neuroergonomics and robotics, also by means of brain-machine interfaces. Breakthrough solutions will compose the advanced robotic suit, endowed with soft structures to increment safety and human comfort, and with an advanced real-time control that takes into account the interaction with the human body.

Keywords: Neuroergonomics, Brain computer interfaces, Robotics, Robotic suits, Compliant actuators, Exoskeleton, EEG, Dynamic balance control

Vedula, Sri Ram Krishna, Ravasio, Andrea, Anon, Ester, Chen, Tianchi, Peyret, G., Ashraf, Mohammed, Ladoux, Benoit, (2014). Microfabricated environments to study collective cell behaviors Methods in Cell Biology (ed. Piel, M., Théry, M.), Academic Press 120, 235-252

Abstract Coordinated cell movements in epithelial layers are essential for proper tissue morphogenesis and homeostasis. Microfabrication techniques have proven to be very useful for studies of collective cell migration in vitro. In this chapter, we briefly review the use of microfabricated substrates in providing new insights into collective cell behaviors. We first describe the development of micropatterned substrates to study the influence of geometrical constraints on cell migration and coordinated movements. Then, we present an alternative method based on microfabricated pillar substrates to create well-defined gaps within cell sheets and study gap closure. We also provide a discussion that presents possible pitfalls and sheds light onto the important parameters that allow the study of long-term cell culture on substrates of well-defined geometries.

Keywords: Microfabricated substrates, Microcontact printing, Collective cell behavior, Geometrical constraints, Epithelial gap closure

del Moral Zamora, B., Azpeitia, J. M. Á, Farrarons, J. C., Català, P. L. M., Corbera, A. H., Juárez, A., Samitier, J., (2014). Towards point-of-use dielectrophoretic methods: A new portable multiphase generator for bacteria concentration IFMBE Proceedings XIII Mediterranean Conference on Medical and Biological Engineering and Computing 2013 (ed. Roa Romero, Laura M.), Springer International Publishing (London, UK) 41, 856-859

This manuscript presents portable and low cost electronic system for specific point-of-use dielectrophoresis applications. The system is composed of two main modules: a) a multiphase generator based on a Class E amplifier, which provides 4 sinusoidal signals (0º, 90º, 180º, 270º) at 1 MHz with variable output voltage up to 10 Vpp (Vm) and an output driving current of 1 A; and b) a dielectrophoresis-based microfluidic chip containing two interdigitated electrodes. The system has been validated by concentrating Escherichia Coli at 1 MHz while applying a continuous flow of 5

Keywords: Cell Concentrator, Class E amplifier, Dielectrophoresis, Electronics, Lab-on-a-chip (LOC), Low cost, Portable device

Jané, R., Caminal, P., Giraldo, B., Solà, J., Torres, A., (2014). Libro de Actas del CASEIB 2014 XXXII Congreso Anual de la SEIB , CASEIB-IBEC (Barcelona, Spain) , 20


Keywords: -----

Comments are closed