Publications

by Keyword: Focal adhesions


By year:[ 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 ]

Neri, L., Lasa, M., Elosegui-Artola, A., D'Avola, D., Carte, B., Gazquez, C., Alve, S., Roca-Cusachs, P., Iñarrairaegui, M., Herrero, J., Prieto, J., Sangro, B., Aldabe, R., (2017). NatB-mediated protein N- Oncotarget 8, (25), 40967-40981

The identification of new targets for systemic therapy of hepatocellular carcinoma (HCC) is an urgent medical need. Recently, we showed that hNatB catalyzes the N-

Keywords: CDK2, Cell cycle arrest, Cell-cell junctions, Focal adhesions, Tropomyosin


Lagunas, A., Garcia, A., Artés, J. M., Vida, Y., Collado, D., Pérez-Inestrosa, E., Gorostiza, P., Claros, S., Andrades, J. A., Samitier, J., (2014). Large-scale dendrimer-based uneven nanopatterns for the study of local arginine-glycine-aspartic acid (RGD) density effects on cell adhesion Nano Research 7, (3), 399-409

Cell adhesion processes are governed by the nanoscale arrangement of the extracellular matrix (ECM), being more affected by local rather than global concentrations of cell adhesive ligands. In many cell-based studies, grafting of dendrimers on surfaces has shown the benefits of the local increase in concentration provided by the dendritic configuration, although the lack of any reported surface characterization has limited any direct correlation between dendrimer disposition and cell response. In order to establish a proper correlation, some control over dendrimer surface deposition is desirable. Here, dendrimer nanopatterning has been employed to address arginine-glycine-aspartic acid (RGD) density effects on cell adhesion. Nanopatterned surfaces were fully characterized by atomic force microscopy (AFM), scanning tunneling microscopy (STM) and X-ray photoelectron spectroscopy (XPS), showing that tunable distributions of cell adhesive ligands on the surface are obtained as a function of the initial dendrimer bulk concentration. Cell experiments showed a clear correlation with dendrimer surface layout: Substrates presenting regions of high local ligand density resulted in a higher percentage of adhered cells and a higher degree of maturation of focal adhesions (FAs). Therefore, dendrimer nanopatterning is presented as a suitable and controlled approach to address the effect of local ligand density on cell response. Moreover, due to the easy modification of dendrimer peripheral groups, dendrimer nanopatterning can be further extended to other ECM ligands having density effects on cells.

Keywords: Arginine-glycine-aspartic acid, Atomic force microscopy, Cell adhesion, Dendrimer, Focal adhesions, Scanning tunneling microscopy


Estevez, M., Fernandez-Ulibarri, I., Martinez, E., Egea, G., Samitier, J., (2010). Changes in the internal organization of the cell by microstructured substrates Soft Matter 6, (3), 582-590

Surface features at the micro and nanometre scale have been shown to influence and even determine cell behaviour and cytoskeleton organization through direct mechanotransductive pathways. Much less is known about the function and internal distribution of organelles of cells grown on topographically modified surfaces. In this study, the nanoimprint lithography technique was used to manufacture poly(methyl methacrylate) (PMMA) sheets with a variety of features in the micrometre size range. Normal rat kidney (NRK) fibroblasts were cultured on these substrates and immunofluorescence staining assays were performed to visualize cell adhesion, the organization of the cytoskeleton and the morphology and subcellular positioning of the Golgi complex. The results show that different topographic features at the micrometric scale induce different rearrangements of the cell cytoskeleton, which in turn alter the positioning and morphology of the Golgi complex. Microposts and microholes alter the mechanical stability of the Golgi complex by modifying the actin cytoskeleton organization leading to the compaction of the organelle. These findings prove that physically modified surfaces are a valuable tool with which to study the dynamics of cell cytoskeleton organization and its subsequent repercussion on internal cell organization and associated function.

Keywords: Actin stress fibers, Golgi-complex, Focal adhesions, Cytoskeletal organization, Osteoblast adhesion, Mammalian-cells, Micron-scale, Nanoscale, Dynamics, Rho


Trepat, X., Wasserman, M. R., Angelini, T. E., Millet, E., Weitz, D. A., Butler, J. P., Fredberg, J. J., (2009). Physical forces during collective cell migration Nature Physics 5, (6), 426-430

Fundamental biological processes including morphogenesis, tissue repair and tumour metastasis require collective cell motions(1-3), and to drive these motions cells exert traction forces on their surroundings(4). Current understanding emphasizes that these traction forces arise mainly in 'leader cells' at the front edge of the advancing cell sheet(5-9). Our data are contrary to that assumption and show for the first time by direct measurement that traction forces driving collective cell migration arise predominately many cell rows behind the leading front edge and extend across enormous distances. Traction fluctuations are anomalous, moreover, exhibiting broad non-Gaussian distributions characterized by exponential tails(10-12). Taken together, these unexpected findings demonstrate that although the leader cell may have a pivotal role in local cell guidance, physical forces that it generates are but a small part of a global tug-of-war involving cells well back from the leading edge.

Keywords: Focal adhesions, Granular matter, Bead packs, Morphogenesis, Sheets, Actin, Fluctuations, Fibroblasts, Microscopy, Diversity


Comments are closed