by Keyword: Morphogenesis

By year:[ 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 ]

Hernández-Vega, Amayra, Marsal, María, Pouille, Philippe-Alexandre, Tosi, Sébastien, Colombelli, Julien, Luque, Tomás, Navajas, Daniel, Pagonabarraga, Ignacio, Martín-Blanco, Enrique, (2017). Polarized cortical tension drives zebrafish epiboly movements EMBO Journal 36, (1), 25-41

The principles underlying the biomechanics of morphogenesis are largely unknown. Epiboly is an essential embryonic event in which three tissues coordinate to direct the expansion of the blastoderm. How and where forces are generated during epiboly, and how these are globally coupled remains elusive. Here we developed a method, hydrodynamic regression (HR), to infer 3D pressure fields, mechanical power, and cortical surface tension profiles. HR is based on velocity measurements retrieved from 2D+T microscopy and their hydrodynamic modeling. We applied HR to identify biomechanically active structures and changes in cortex local tension during epiboly in zebrafish. Based on our results, we propose a novel physical description for epiboly, where tissue movements are directed by a polarized gradient of cortical tension. We found that this gradient relies on local contractile forces at the cortex, differences in elastic properties between cortex components and the passive transmission of forces within the yolk cell. All in all, our work identifies a novel way to physically regulate concerted cellular movements that might be instrumental for the mechanical control of many morphogenetic processes.

Keywords: Epiboly, Hydrodynamics, Mechanics, Morphogenesis, Zebrafish

Trepat, X., Fredberg, J. J., (2011). Plithotaxis and emergent dynamics in collective cellular migration Trends in Cell Biology 21, (11), 638-646

For a monolayer sheet to migrate cohesively, it has long been suspected that each constituent cell must exert physical forces not only upon its extracellular matrix but also upon neighboring cells. The first comprehensive maps of these distinct force components reveal an unexpected physical picture. Rather than showing smooth and systematic variation within the monolayer, the distribution of physical forces is dominated by heterogeneity, both in space and in time, which emerges spontaneously, propagates over great distances, and cooperates over the span of many cell bodies. To explain the severe ruggedness of this force landscape and its role in collective cell guidance, the well known mechanisms of chemotaxis, durotaxis, haptotaxis are clearly insufficient. In a broad range of epithelial and endothelial cell sheets, collective cell migration is governed instead by a newly discovered emergent mechanism of innately collective cell guidance - plithotaxis.

Keywords: Positional information, Drosophila embryo, Sheet migration, Dpp gradient, Cells, Force, Morphogenesis, Transition, Identification, Proliferation

Angelini, T. E., Hannezo, E., Trepat, X., Fredberg, J. J., Weitz, D. A., (2010). Cell migration driven by cooperative substrate deformation patterns Physical Review Letters 104, (16), 168104

Most eukaryotic cells sense and respond to the mechanical properties of their surroundings. This can strongly influence their collective behavior in embryonic development, tissue function, and wound healing. We use a deformable substrate to measure collective behavior in cell motion due to substrate mediated cell-cell interactions. We quantify spatial and temporal correlations in migration velocity and substrate deformation, and show that cooperative cell-driven patterns of substrate deformation mediate long-distance mechanical coupling between cells and control collective cell migration.

Keywords: Movement, Morphogenesis, Stiffness, Forces, Flocks

Trepat, X., Wasserman, M. R., Angelini, T. E., Millet, E., Weitz, D. A., Butler, J. P., Fredberg, J. J., (2009). Physical forces during collective cell migration Nature Physics 5, (6), 426-430

Fundamental biological processes including morphogenesis, tissue repair and tumour metastasis require collective cell motions(1-3), and to drive these motions cells exert traction forces on their surroundings(4). Current understanding emphasizes that these traction forces arise mainly in 'leader cells' at the front edge of the advancing cell sheet(5-9). Our data are contrary to that assumption and show for the first time by direct measurement that traction forces driving collective cell migration arise predominately many cell rows behind the leading front edge and extend across enormous distances. Traction fluctuations are anomalous, moreover, exhibiting broad non-Gaussian distributions characterized by exponential tails(10-12). Taken together, these unexpected findings demonstrate that although the leader cell may have a pivotal role in local cell guidance, physical forces that it generates are but a small part of a global tug-of-war involving cells well back from the leading edge.

Keywords: Focal adhesions, Granular matter, Bead packs, Morphogenesis, Sheets, Actin, Fluctuations, Fibroblasts, Microscopy, Diversity

Comments are closed