Publications

by Keyword: Neuroscience


By year:[ 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 ]

Marco, S., Gutiérrez-Gálvez, A., Lansner, A., Martinez, D., Rospars, J. P., Beccherelli, R., Perera, A., Pearce, T., Vershure, P., Persaud, K., (2013). Biologically inspired large scale chemical sensor arrays and embedded data processing Proceedings of SPIE - The International Society for Optical Engineering Smart Sensors, Actuators, and MEMS VI , SPIE Digital Library (Grenoble, France) 8763, 1-15

Biological olfaction outperforms chemical instrumentation in specificity, response time, detection limit, coding capacity, time stability, robustness, size, power consumption, and portability. This biological function provides outstanding performance due, to a large extent, to the unique architecture of the olfactory pathway, which combines a high degree of redundancy, an efficient combinatorial coding along with unmatched chemical information processing mechanisms. The last decade has witnessed important advances in the understanding of the computational primitives underlying the functioning of the olfactory system. EU Funded Project NEUROCHEM (Bio-ICT-FET- 216916) has developed novel computing paradigms and biologically motivated artefacts for chemical sensing taking inspiration from the biological olfactory pathway. To demonstrate this approach, a biomimetic demonstrator has been built featuring a large scale sensor array (65K elements) in conducting polymer technology mimicking the olfactory receptor neuron layer, and abstracted biomimetic algorithms have been implemented in an embedded system that interfaces the chemical sensors. The embedded system integrates computational models of the main anatomic building blocks in the olfactory pathway: The olfactory bulb, and olfactory cortex in vertebrates (alternatively, antennal lobe and mushroom bodies in the insect). For implementation in the embedded processor an abstraction phase has been carried out in which their processing capabilities are captured by algorithmic solutions. Finally, the algorithmic models are tested with an odour robot with navigation capabilities in mixed chemical plumes.

Keywords: Antennal lobes, Artificial olfaction, Computational neuroscience, Olfactory bulbs, Plume tracking, Abstracting, Actuators, Algorithms, Biomimetic processes, Chemical sensors, Conducting polymers, Data processing, Flavors, Odors, Robots, Smart sensors, Embedded systems


Gil, V., Del Río, J. A., (2012). Analysis of axonal growth and cell migration in 3D hydrogel cultures of embryonic mouse CNS tissue Nature Protocols 7, (2), 268-280

This protocol uses rat tail-derived type I collagen hydrogels to analyze key processes in developmental neurobiology, such as chemorepulsion and chemoattraction. The method is based on culturing small pieces of brain tissue from embryonic or early perinatal mice inside a 3D hydrogel formed by rat tail-derived type I collagen or, alternatively, by commercial Matrigel. The neural tissue is placed in the hydrogel with other brain tissue pieces or cell aggregates genetically modified to secrete a particular molecule that can generate a gradient inside the hydrogel. The present method is uncomplicated and generally reproducible, and only a few specific details need to be considered during its preparation. Moreover, the degree and behavior of axonal growth or neural migration can be observed directly using phase-contrast, fluorescence microscopy or immunocytochemical methods. This protocol can be carried out in 4 weeks.

Keywords: Cell biology, Cell culture, Developmental biology, Imaging, Model organisms, Neuroscience, Tissue culture


Comments are closed