DONATE

Staff member

Gabriel Gomila Lluch

Group Leader
+34 934 020 206
ggomilaibecbarcelona.eu
CV Summary
Gabriel Gomila has got a PhD in Physics from the University of Barcelona (1997) with a thesis based on the theoretical modelling of electron transport at semiconductor interfaces. Later on, he was post-doctoral researcher at three different universities in Italy, France and Spain where he specialized in the theoretical modelling of nanoescale electronic devices. In 2001 he moved to the Department of Electronics at the University of Barcelona thanks to a Ramon y Cajal fellowship, where he expanded his research interests towards the merge of electronics and biological fields, thus focusing on microsystems for biological applications on-a-chip and on Atomic Force Microscopy for the electrical study of biological samples. In 2005 he became Associate Professor at the University of Barcelona and in 2008 Group Leader at IBEC, and in 2014 he was awarded with the ICREA Academia prize, which recognizes and promotes the research excellence of the university staff of Catalonia. Since 2017 he is Full Professor at the Department of Electronics of the University of Barcelona. His current research interests are centred on the understanding of the bioelectrical phenomena at the nanoscale. He combines research activities with teaching on Nanobiotechnology, Scanning Probe Microscopy, Bioelectricity and Nanomedicine at the University of Barcelona.
Staff member publications

Kyndiah, Adrica, Caironi, Mario, Sala, Luca, Tullii, Gabriele, Khudiakov, Aleksandr, Zemignani, Giulia Zoe, Gomila, Gabriel, De Angelis, Francesco, Fabiano, Simone, Antognazza, Maria Rosa, Schwartz, Peter J, (2024). The Crucial Role of Cell/Polymer Interface for the Transduction of Action Potentials via Printed Electrolyte-Gated Polymer Field-Effect Transistors Proceedings Of Bioelectronic Interfaces: Materials, Devices And Applications (Cybioel) ,

Tanwar, Shubham, Millan-Solsona, Ruben, Ruiz-Molina, Sara, Mas-Torrent, Marta, Kyndiah, Adrica, Gomila, Gabriel, (2024). Automated Scanning Dielectric Microscopy Toolbox for Operando Nanoscale Electrical Characterization of Electrolyte-Gated Organic Transistors Advanced Electronic Materials 10, 2400222

Electrolyte-gated organic transistors (EGOTs) leveraging organic semiconductors' electronic and ionic transport characteristics are the key enablers for many biosensing and bioelectronic applications that can selectively sense, record, and monitor different biological and biochemical processes at the nanoscale and translate them into macroscopic electrical signals. Understanding such transduction mechanisms requires multiscale characterization tools to comprehensively probe local electrical properties and link them with device behavior across various bias points. Here, an automated scanning dielectric microscopy toolbox is demonstrated that performs operando in-liquid scanning dielectric microscopy measurements on functional EGOTs and carries out extensive data analysis to unravel the evolution of local electrical properties in minute detail. This paper emphasizes critical experimental considerations permitting standardized, accurate, and reproducible data acquisition. The developed approach is validated with EGOTs based on blends of organic small molecule semiconductor and insulating polymer that work as accumulation-mode field-effect transistors. Furthermore, the degradation of local electrical characteristics at high gate voltages is probed, which is apparently driven by the destruction of local crystalline order due to undesirable electrochemical swelling of the organic semiconducting material near the source electrode edge. The developed approach paves the way for systematic probing of EGOT-based technologies for targeted optimization and fundamental understanding. This study presents automated scanning dielectric microscopy toolbox for comprehensive nanoscale electrical measurements of operating electrolyte-gated organic transistors (EGOTs). It highlights critical experimental practices for accurate data acquisition and easily reproducible analysis. The approach is validated using EGOTs based on blends of organic semiconductor and insulating polymer, revealing degradation at high gate voltages due to electrochemical swelling in minute details. image

JTD Keywords: Automation, Electrolyte-gated organic transistors, Nanoscale, Operando scanning dielectric microscopy, Transistor degradatio


Tanwar, S, Millan-Solsona, R, Ruiz-Molina, S, Mas-Torrent, M, Kyndiah, A, Gomila, G, (2024). Nanoscale Operando Characterization of Electrolyte-Gated Organic Field-Effect Transistors Reveals Charge Transport Bottlenecks Advanced Materials 36, 2309767

Charge transport in electrolyte-gated organic field-effect transistors (EGOFETs) is governed by the microstructural property of the semiconducting thin film that is in direct contact with the electrolyte. Therefore, a comprehensive nanoscale operando characterization of the active channel is crucial to pinpoint various charge transport bottlenecks for rational and targeted optimization of the devices. Here, the local electrical properties of EGOFETs are systematically probed by in-liquid scanning dielectric microscopy (in-liquid SDM) and a direct picture of their functional mechanism at the nanoscale is provided across all operational regimes, starting from subthreshold, linear to saturation, until the onset of pinch-off. To this end, a robust interpretation framework of in-liquid SDM is introduced that enables quantitative local electric potential mapping directly from raw experimental data without requiring calibration or numerical simulations. Based on this development, a straightforward nanoscale assessment of various charge transport bottlenecks is performed, like contact access resistances, inter- and intradomain charge transport, microstructural inhomogeneities, and conduction anisotropy, which have been inaccessible earlier. Present results contribute to the fundamental understanding of charge transport in electrolyte-gated transistors and promote the development of direct structure-property-function relationships to guide future design rules. This study delves into the charge transport properties of electrolyte-gated organic field-effect transistors by employing in-liquid scanning dielectric microscopy. By introducing a novel interpretation framework, the research achieves quantitative mapping of the local electric potential, facilitating a detailed assessment of charge transport bottlenecks across all operational regimes. The findings can fosterthe formulation ofstructure-property-function relationships for device optimization.image

JTD Keywords: Conduction anisotropy, Conductivity maps, Electrolyte-gated organic field-effect transistors, Nanoscale, Operando, Operation regimes, Potential maps, Scanning dielectric microscopy


Pankratov, Dmitrii, Martinez, Silvia Hidalgo, Karman, Cheryl, Gerzhik, Anastasia, Gomila, Gabriel, Trashin, Stanislav, Boschker, Henricus T S, Geelhoed, Jeanine S, Mayer, Dirk, De Wael, Karolien, Meysman, Filip J R, (2024). The organo-metal-like nature of long-range conduction in cable bacteria Bioelectrochemistry 157, 108675

Cable bacteria are filamentous, multicellular microorganisms that display an exceptional form of biological electron transport across centimeter-scale distances. Currents are guided through a network of nickel-containing protein fibers within the cell envelope. Still, the mechanism of long-range conduction remains unresolved. Here, we characterize the conductance of the fiber network under dry and wet, physiologically relevant, conditions. Our data reveal that the fiber conductivity is high (median value: 27 S cm-1; range: 2 to 564 S cm-1), does not show any redox signature, has a low thermal activation energy (Ea = 69 +/- 23 meV), and is not affected by humidity or the presence of ions. These features set the nickel-based conduction mechanism in cable bacteria apart from other known forms of biological electron transport. As such, conduction resembles that of an organic semi-metal with a high charge carrier density. Our observation that biochemistry can synthesize an organometal-like structure opens the way for novel bio-based electronic technologies.

JTD Keywords: 'current, Activation energy, Bacteria, Bioelectronic, Bioelectronics, Cable bacteria, Cables, Centimeter-scale, Electrochemical impedance spectroscopy, Electrochemical-impedance spectroscopies, Electron transport, Electron transport properties, Electron-transport, Long -distance electron transport, Long-distance electron transport, Microbial nanowires, Nickel, Nickel containing, Protein conductivity, Protein fibers, Proteins, Sulfur


Huetter, L, Kyndiah, A, Gomila, G, (2023). Analytical Physical Model for Electrolyte Gated Organic Field Effect Transistors in the Helmholtz Approximation Advanced Theory And Simulations 6, 2200696

Dols-Perez, A, Fornaguera, C, Feiner-Gracia, N, Grijalvo, S, Solans, C, Gomila, G, (2023). Effect of surface functionalization and loading on the mechanical properties of soft polymeric nanoparticles prepared by nano-emulsion templating Colloids And Surfaces B-Biointerfaces 222, 113019

Drug and gene delivery systems based on polymeric nanoparticles offer a greater efficacy and a reduced toxicity compared to traditional formulations. Recent studies have evidenced that their internalization, biodistribution and efficacy can be affected, among other factors, by their mechanical properties. Here, we analyze by means of Atomic Force Microscopy force spectroscopy how composition, surface functionalization and loading affect the mechanics of nanoparticles. For this purpose, nanoparticles made of Poly(lactic-co-glycolic) (PLGA) and Ethyl cellulose (EC) with different functionalizations and loading were prepared by nano-emulsion templating using the Phase Inversion Composition method (PIC) to form the nano-emulsions. A multiparametric nanomechanical study involving the determination of the Young's modulus, maximum deformation and breakthrough force was carried out. The obtained results showed that composition, surface functionalization and loading affect the nanomechanical properties in a different way, thus requiring, in general, to consider the overall mechanical properties after the addition of a functionalization or loading. A graphical representation method has been proposed enabling to easily identify mechanically equivalent formulations, which is expected to be useful in the development of soft polymeric nanoparticles for pre-clinical and clinical use.Copyright © 2022 The Authors. Published by Elsevier B.V. All rights reserved.

JTD Keywords: afm, atomic-force microscopy, cell, delivery-systems, drug-delivery, emulsification approach, internalization, mechanics of nanoparticles, nanomedicine, nanoparticle functionalization, particles, protein corona, size, young?s modulus, Afm, Loaded plga nanoparticles, Mechanics of nanoparticles, Nanomedicine, Nanoparticle functionalization, Polymeric nanoparticles, Young’s modulus


Huetter, L, Kyndiah, A, Gomila, G, (2023). Analytical Physical Model for Organic Metal-Electrolyte-Semiconductor Capacitors Advanced Theory And Simulations 6, 2200698

This work presents the analytical physical modeling of undoped organic metal-electrolyte-semiconductor (OMES) capacitors in the framework of the Nernst-Planck-Poisson theory, including the presence of compact interfacial layers. This work derives an exact analytical solution, up to a quadrature, for the stationary electric potential and charge density distributions in both the semiconductor film and the electrolyte solution, and from them the sheet semiconductor charge and the stationary differential capacitance are obtained as a function of the applied voltage. The dependence of these magnitudes on the physical device parameters, like the ionic concentration of the electrolyte, the capacitance of the interfacial compact layers and the injected hole density is then analyzed. This work shows that ionic diffusive effects in the electrolyte can play an important role in the device response, inducing a broadening of the transition from the weak to the strong accumulation regimes. This fact can make that the strong accumulation regime is not achieved in OMES within the usual voltage operation range of these devices. The analytical solution is validated by means of finite element numerical calculations. The implications of the results obtained on the physics of electrolyte gated organic field effect transistors (EGOFETs) are discussed.

JTD Keywords: Analytical model, Equivalent-circuit model, Metal electrolyte semiconductor capacitors, Metal insulator semiconductor capacitors, Organic devices


Checa, M, Jin, X, Millan-Solsona, R, Neumayer, SM, Susner, MA, McGuire, MA, O'Hara, A, Gomila, G, Maksymovych, P, Pantelides, ST, Collins, L, (2022). Revealing Fast Cu-Ion Transport and Enhanced Conductivity at the CuInP2S6?In4/3P2S6 Heterointerface Acs Nano 16, 15347-15357

Van der Waals layered ferroelectrics, such as CuInP2S6 (CIPS), offer a versatile platform for miniaturization of ferroelectric device technologies. Control of the targeted composition and kinetics of CIPS synthesis enables the formation of stable self-assembled heterostructures of ferroelectric CIPS and nonferroelectric In4/3P2S6 (IPS). Here, we use quantitative scanning probe microscopy methods combined with density functional theory (DFT) to explore in detail the nanoscale variability in dynamic functional properties of the CIPS-IPS heterostructure. We report evidence of fast ionic transport which mediates an appreciable out-of-plane electromechanical response of the CIPS surface in the paraelectric phase. Further, we map the nanoscale dielectric and ionic conductivity properties as we thermally stimulate the ferroelectric-paraelectric phase transition, recovering the local dielectric behavior during this phase transition. Finally, aided by DFT, we reveal a substantial and tunable conductivity enhancement at the CIPS/IPS interface, indicating the possibility of engineering its interfacial properties for next generation device applications.

JTD Keywords: copper indium thiophosphate, diffusion, elastic band method, ferroelectrics, ionic conductor, migration, nanoscale, phase transition, piezoresponse force microscopy, scanning dielectric microscopy, transition, Copper indium thiophosphate, Initio molecular-dynamics, Scanning dielectric microscopy


Lozano, H, Millan-Solsona, R, Blanco-Cabra, N, Fabregas, R, Torrents, E, Gomila, G, (2021). Electrical properties of outer membrane extensions from Shewanella oneidensis MR-1 Nanoscale 13, 18754-18762

Outer membrane extensions from the metal-reducing bacterium Shewanella oneidensis MR-1 show an insulating behavior in dry air environment as measured by scanning dielectric microscopy.

JTD Keywords: constant, dielectric polarization, microbial nanowires, nanoscale, transport, Air environment, Bacteria, Bacterial cells, Bacterial nanowires, Dry air, Metal-reducing bacteria, Outer membrane, Phase-minerals, Proteins, Shewanella oneidensis mr-1, Solid phasis, Solid-phase, Space division multiple access, Tubulars


Balakrishnan, H, Fabregas, R, Millan-Solsona, R, Fumagalli, L, Gomila, G, (2021). Spatial Resolution and Capacitive Coupling in the Characterization of Nanowire Nanocomposites by Scanning Dielectric Microscopy Microscopy And Microanalysis 27, 1026-1034

Nanowire-based nanocomposite materials are being developed as transparent and flexible electrodes or as stretchable conductors and dielectrics for biosensing. Here, we theoretically investigate the use of scanning dielectric microscopy (SDM) to characterize these materials in a nondestructive way, with a special focus on the achievable spatial resolution and the possibility of detection of the capacitive coupling between nearby nanowires. Numerical calculations with models involving single and multiple buried nanowires have been performed. We demonstrate that the capacitance gradient spread function of a single buried nanowire consists of a modified Lorenzianan with a cubic decay. We show that the achievable spatial resolution can be determined with good accuracy with the help of this spread function. It is shown that, in general, the spatial resolution worsens when any system parameter decreases the maximum of the nanowire spread function or increases its width, or both. Finally, we show that SDM measurements are also sensitive to the capacitive coupling between nearby nanowires. This latter result is of utmost relevance since the macroscopic electric properties of nanowire nanocomposites largely depend on the electric interaction between nearby nanowires. The present results show that SDM can be a valuable nondestructive subsurface characterization technique for nanowire nanocomposite materials.

JTD Keywords: depth, electrodes, nanocomposites, nanowires, sdm, spatial resolution, subsurface, tomography, Capacitive coupling, Force microscopy, Nanocomposites, Nanowires, Sdm, Spatial resolution, Subsurface


Checa, M, Millan-Solsona, R, Mares, AG, Pujals, S, Gomila, G, (2021). Fast Label-Free Nanoscale Composition Mapping of Eukaryotic Cells Via Scanning Dielectric Force Volume Microscopy and Machine Learning Small Methods 5, 2100279

Mapping the biochemical composition of eukaryotic cells without the use of exogenous labels is a long-sought objective in cell biology. Recently, it has been shown that composition maps on dry single bacterial cells with nanoscale spatial resolution can be inferred from quantitative nanoscale dielectric constant maps obtained with the scanning dielectric microscope. Here, it is shown that this approach can also be applied to the much more challenging case of fixed and dry eukaryotic cells, which are highly heterogeneous and show micrometric topographic variations. More importantly, it is demonstrated that the main bottleneck of the technique (the long computation times required to extract the nanoscale dielectric constant maps) can be shortcut by using supervised neural networks, decreasing them from weeks to seconds in a wokstation computer. This easy-to-use data-driven approach opens the door for in situ and on-the-fly label free nanoscale composition mapping of eukaryotic cells with scanning dielectric microscopy. © 2021 The Authors. Small Methods published by Wiley-VCH GmbH

JTD Keywords: eukaryotic cells, label-free mapping, machine learning, nanoscale, scanning dielectric microscopy, Biochemical composition, Cells, Constant, Cytology, Data-driven approach, Dielectric forces, Dielectric materials, Eukaryotic cells, Label-free mapping, Machine learning, Mapping, Microscopy, atomic force, Nanoscale, Nanoscale composition, Nanoscale spatial resolution, Nanotechnology, Scanning, Scanning dielectric microscopy, Supervised neural networks


Boschker, HTS, Cook, PLM, Polerecky, L, Eachambadi, RT, Lozano, H, Hidalgo-Martinez, S, Khalenkow, D, Spampinato, V, Claes, N, Kundu, P, Wang, D, Bals, S, Sand, KK, Cavezza, F, Hauffman, T, Bjerg, JT, Skirtach, AG, Kochan, K, McKee, M, Wood, B, Bedolla, D, Gianoncelli, A, Geerlings, NMJ, Van Gerven, N, Remaut, H, Geelhoed, JS, Millan-Solsona, R, Fumagalli, L, Nielsen, LP, Franquet, A, Manca, JV, Gomila, G, Meysman, FJR, (2021). Efficient long-range conduction in cable bacteria through nickel protein wires Nature Communications 12, 3996

Filamentous cable bacteria display long-range electron transport, generating electrical currents over centimeter distances through a highly ordered network of fibers embedded in their cell envelope. The conductivity of these periplasmic wires is exceptionally high for a biological material, but their chemical structure and underlying electron transport mechanism remain unresolved. Here, we combine high-resolution microscopy, spectroscopy, and chemical imaging on individual cable bacterium filaments to demonstrate that the periplasmic wires consist of a conductive protein core surrounded by an insulating protein shell layer. The core proteins contain a sulfur-ligated nickel cofactor, and conductivity decreases when nickel is oxidized or selectively removed. The involvement of nickel as the active metal in biological conduction is remarkable, and suggests a hitherto unknown form of electron transport that enables efficient conduction in centimeter-long protein structures. Filamentous cable bacteria conduct electrical currents over centimeter distances through fibers embedded in their cell envelope. Here, Boschker et al. show that the fibers consist of a conductive core containing nickel proteins that is surrounded by an insulating protein shell.

JTD Keywords: Bacteria (microorganisms), Bacterial protein, Bacterial proteins, Bacterium, Chemistry, Deltaproteobacteria, Electric conductivity, Electricity, Electron, Electron transport, Metabolism, Microscopy, Nanowires, Nickel, Physiology, Protein, Resonance raman, Spectroscopy, Transport electrons


Balakrishnan, Harishankar, Millan-Solsona, Ruben, Checa, Marti, Fabregas, Rene, Fumagalli, Laura, Gomila, Gabriel, (2021). Depth mapping of metallic nanowire polymer nanocomposites by scanning dielectric microscopy Nanoscale 13, 10116-10126

Polymer nanocomposite materials based on metallic nanowires are widely investigated as transparent and flexible electrodes or as stretchable conductors and dielectrics for biosensing. Here we show that Scanning Dielectric Microscopy (SDM) can map the depth distribution of metallic nanowires within the nanocomposites in a non-destructive way. This is achieved by a quantitative analysis of sub-surface electrostatic force microscopy measurements with finite-element numerical calculations. As an application we determined the three-dimensional spatial distribution of ?50 nm diameter silver nanowires in ?100 nm-250 nm thick gelatin films. The characterization is done both under dry ambient conditions, where gelatin shows a relatively low dielectric constant, ?r ? 5, and under humid ambient conditions, where its dielectric constant increases up to ?r ? 14. The present results show that SDM can be a valuable non-destructive subsurface characterization technique for nanowire-based nanocomposite materials, which can contribute to the optimization of these materials for applications in fields such as wearable electronics, solar cell technologies or printable electronics. © The Royal Society of Chemistry.

JTD Keywords: composite, constant, electrodes, mode, nanostructures, objects, progress, subsurface, tomography, Composite materials, Dielectric materials, Electric force microscopy, Electrostatic force, Force microscopy, Low dielectric constants, Nanocomposites, Numerical calculation, Polymer nanocomposite, Printable electronics, Scanning dielectric microscopy, Silver nanowires, Solar cell technology, Stretchable conductors, Subsurface characterizations, Transparent electrodes, Wearable technology


Di Muzio, M, Millan-Solsona, R, Dols-Perez, A, Borrell, JH, Fumagalli, L, Gomila, G, (2021). Dielectric properties and lamellarity of single liposomes measured by in-liquid scanning dielectric microscopy Journal Of Nanobiotechnology 19, 167

Liposomes are widely used as drug delivery carriers and as cell model systems. Here, we measure the dielectric properties of individual liposomes adsorbed on a metal electrode by in-liquid scanning dielectric microscopy in force detection mode. From the measurements the lamellarity of the liposomes, the separation between the lamellae and the specific capacitance of the lipid bilayer can be obtained. As application we considered the case of non-extruded DOPC liposomes with radii in the range ~ 100–800 nm. Uni-, bi- and tri-lamellar liposomes have been identified, with the largest population corresponding to bi-lamellar liposomes. The interlamellar separation in the bi-lamellar liposomes is found to be below ~ 10 nm in most instances. The specific capacitance of the DOPC lipid bilayer is found to be ~ 0.75 µF/cm2 in excellent agreement with the value determined on solid supported planar lipid bilayers. The lamellarity of the DOPC liposomes shows the usual correlation with the liposome's size. No correlation is found, instead, with the shape of the adsorbed liposomes. The proposed approach offers a powerful label-free and non-invasive method to determine the lamellarity and dielectric properties of single liposomes. [Figure not available: see fulltext.].

JTD Keywords: constant, force, lamellarity, liposomes, membrane capacitance, model, nanoscale, scanning dielectric microscopy, Lamellarity, Liposomes, Membrane capacitance, Nanoscale, Polarization properties, Scanning dielectric microscopy


Checa, M, Millan-Solsona, R, Mares, AG, Pujals, S, Gomila, G, (2021). Dielectric imaging of fixed hela cells by in‐liquid scanning dielectric force volume microscopy Nanomaterials 11, 1402

Mapping the dielectric properties of cells with nanoscale spatial resolution can be an im-portant tool in nanomedicine and nanotoxicity analysis, which can complement structural and mechanical nanoscale measurements. Recently we have shown that dielectric constant maps can be obtained on dried fixed cells in air environment by means of scanning dielectric force volume mi-croscopy. Here, we demonstrate that such measurements can also be performed in the much more challenging case of fixed cells in liquid environment. Performing the measurements in liquid media contributes to preserve better the structure of the fixed cells, while also enabling accessing the local dielectric properties under fully hydrated conditions. The results shown in this work pave the way to address the nanoscale dielectric imaging of living cells, for which still further developments are required, as discussed here.

JTD Keywords: atomic force microscopy (afm), capacitance, constant, dielectric properties, electrostatic force microscopy (efm), functional microscopy, nanoscale, scanning dielectric microscopy (sdm), Atomic force microscopy (afm), Dielectric properties, Dielectrophoretic separation, Electrostatic force microscopy (efm), Functional micros-copy, Functional microscopy, Scanning dielectric microscopy (sdm), Scanning probe microscopy (spm)


Kyndiah, A, Checa, M, Leonardi, F, Millan-Solsona, R, Di Muzio, M, Tanwar, S, Fumagalli, L, Mas-Torrent, M, Gomila, G, (2021). Nanoscale Mapping of the Conductivity and Interfacial Capacitance of an Electrolyte-Gated Organic Field-Effect Transistor under Operation Advanced Functional Materials 31, 2008032

© 2020 Wiley-VCH GmbH Probing nanoscale electrical properties of organic semiconducting materials at the interface with an electrolyte solution under externally applied voltages is key in the field of organic bioelectronics. It is demonstrated that the conductivity and interfacial capacitance of the active channel of an electrolyte-gated organic field-effect transistor (EGOFET) under operation can be probed at the nanoscale using scanning dielectric microscopy in force detection mode in liquid environment. Local electrostatic force versus gate voltage transfer characteristics are obtained on the device and correlated with the global current–voltage transfer characteristics of the EGOFET. Nanoscale maps of the conductivity of the semiconducting channel show the dependence of the channel conductivity on the gate voltage and its variation along the channel due to the space charge limited conduction. The maps reveal very small electrical heterogeneities, which correspond to local interfacial capacitance variations due to an ultrathin non-uniform insulating layer resulting from a phase separation in the organic semiconducting blend. Present results offer insights into the transduction mechanism at the organic semiconductor/electrolyte interfaces at scales down to ≈100 nm, which can bring substantial optimization of organic electronic devices for bioelectronic applications such as electrical recording on excitable cells or label-free biosensing.

JTD Keywords: Atomic force microscopy, Bioelectronic devices, Electrolyte gated organic field effect transistors, In-liquid scanning dielectric microscopy, Organic semiconducting blend


Kyndiah, A., Leonardi, F., Tarantino, C., Cramer, T., Millan-Solsona, R., Garreta, E., Montserrat, N., Mas-Torrent, M., Gomila, G., (2020). Bioelectronic recordings of cardiomyocytes with accumulation mode electrolyte gated organic field effect transistors Biosensors and Bioelectronics 150, 111844

Organic electronic materials offer an untapped potential for novel tools for low-invasive electrophysiological recording and stimulation devices. Such materials combine semiconducting properties with tailored surface chemistry, elastic mechanical properties and chemical stability in water. In this work, we investigate solution processed Electrolyte Gated Organic Field Effect Transistors (EGOFETs) based on a small molecule semiconductor. We demonstrate that EGOFETs based on a blend of soluble organic semiconductor 2,8-Difluoro-5,11-bis(triethylsilylethynyl)anthradithiophene (diF-TES-ADT) combined with an insulating polymer show excellent sensitivity and long-term recording under electrophysiological applications. Our devices can stably record the extracellular potential of human pluripotent stem cell derived cardiomyocyte cells (hPSCs-CMs) for several weeks. In addition, cytotoxicity tests of pharmaceutical drugs, such as Norepinephrine and Verapamil was achieved with excellent sensitivity. This work demonstrates that organic transistors based on organic blends are excellent bioelectronics transducer for extracellular electrical recording of excitable cells and tissues thus providing a valid alternative to electrochemical transistors.

JTD Keywords: Bioelectronics, Cardiac cells, Organic electronics, Organic field effect transistors, Organic semiconducting blend


Muzio, Martina Di, Millan-Solsona, Ruben, Borrell, Jordi H., Fumagalli, Laura, Gomila, Gabriel, (2020). Cholesterol effect on the specific capacitance of submicrometric DOPC bilayer patches measured by in-liquid scanning dielectric microscopy Langmuir 36, (43), 12963–12972

The specific capacitance of biological membranes is a key physical parameter in bioelectricity that also provides valuable physicochemical information on composition, phase, or hydration properties. Cholesterol is known to modulate the physicochemical properties of biomembranes, but its effect on the specific capacitance has not been fully established yet. Here we use the high spatial resolution capabilities of in-liquid scanning dielectric microscopy in force detection mode to directly demonstrate that DOPC bilayer patches at 50% cholesterol concentration show a strong reduction of their specific capacitance with respect to pure DOPC bilayer patches. The reduction observed (around 35%) cannot be explained by the small increase in bilayer thickness (around 16%). We suggest that the reduction of the specific capacitance might be due to the dehydration of the polar head groups caused by the insertion of cholesterol molecules in the bilayer. The results reported confirm the potential of in-liquid SDM to study the electrical and physicochemical properties of lipid bilayers at very small scales (down to around 200 nm here), with implications in fields such as biophysics, bioelectricity, biochemistry, and biosensing.

JTD


Fabregas, R., Gomila, G., (2020). Dielectric nanotomography based on electrostatic force microscopy: A numerical analysis Journal of Applied Physics 127, (2), 024301

Electrostatic force microscopy (EFM) can image nanoscale objects buried below the surface. Here, we theoretically show that this capability can be used to obtain nanotomographic information, i.e., the physical dimensions and dielectric properties, of buried nano-objects. These results constitute a first step toward implementing a nondestructive dielectric nanotomography technique based on EFM with applications in materials sciences and life sciences.

JTD


Millán, Rubén, Checa, Marti, Fumagalli, Laura, Gomila, Gabriel, (2020). Mapping the capacitance of self-assembled monolayers at metal/electrolyte interfaces at the nanoscale by In-liquid scanning dielectric microscopy Nanoscale 12, (40), 20658-20668

Organic self-assembled monolayers (SAMs) at metal/electrolyte interfaces have been thoroughly investigated both from fundamental and applied points of views. A relevant figure of merit of metal/SAM/electrolyte interfaces is the specific capacitance, which determines the charge that can be accumulated at the metal electrode. Here, we show that the specific capacitance of non-uniform alkanethiol SAMs at gold/electrolyte interfaces can be quantitatively measured and mapped at the nanoscale with in-liquid Scanning Dielectric Microscopy in force detection mode. We show that sub-100 nm spatial resolution in ultrathin (< 1 nm) SAMs can be achieved, largely improving the performance of current sensing characterization techniques. Present results open the access to study the dielectric properties of metal/SAM/electrolyte interfaces at scales that have remained unexplored until now.

JTD


Kyndiah, Adrica, Checa, Martí, Leonardi, Francesca, Millan-Solsona, Ruben, Di Muzio, Martina, Tanwar, Shubham, Fumagalli, Laura, Mas-Torrent, Marta, Gomila, Gabriel, (2020). Nanoscale mapping of the conductivity and interfacial capacitance of an electrolyte-gated organic field-effect transistor under operation Advanced Functional Materials , (), 2008032

Probing nanoscale electrical properties of organic semiconducting materials at the interface with an electrolyte solution under externally applied voltages is key in the field of organic bioelectronics. It is demonstrated that the conductivity and interfacial capacitance of the active channel of an electrolyte-gated organic field‐effect transistor (EGOFET) under operation can be probed at the nanoscale using scanning dielectric microscopy in force detection mode in liquid environment. Local electrostatic force versus gate voltage transfer characteristics are obtained on the device and correlated with the global current–voltage transfer characteristics of the EGOFET. Nanoscale maps of the conductivity of the semiconducting channel show the dependence of the channel conductivity on the gate voltage and its variation along the channel due to the space charge limited conduction. The maps reveal very small electrical heterogeneities, which correspond to local interfacial capacitance variations due to an ultrathin non-uniform insulating layer resulting from a phase separation in the organic semiconducting blend. Present results offer insights into the transduction mechanism at the organic semiconductor/electrolyte interfaces at scales down to ≈100 nm, which can bring substantial optimization of organic electronic devices for bioelectronic applications such as electrical recording on excitable cells or label-free biosensing.

JTD


Checa, Marti, Millán, Rubén, Blanco, Núria, Torrents, Eduard, Fabregas, Rene, Gomila, Gabriel, (2019). Mapping the dielectric constant of a single bacterial cell at the nanoscale with scanning dielectric force volume microscopy Nanoscale 11, 20809-20819

Mapping the dielectric constant at the nanoscale of samples showing a complex topography, such as non-planar nanocomposite materials or single cells, poses formidable challenges to existing nanoscale dielectric microscopy techniques. Here we overcome these limitations by introducing Scanning Dielectric Force Volume Microscopy. This scanning probe microscopy technique is based on the acquisition of electrostatic force approach curves at every point of a sample and its post-processing and quantification by using a computational model that incorporates the actual measured sample topography. The technique provides quantitative nanoscale images of the local dielectric constant of the sample with unparalleled accuracy, spatial resolution and statistical significance, irrespectively of the complexity of its topography. We illustrate the potential of the technique by presenting a nanoscale dielectric constant map of a single bacterial cell, including its small-scale appendages. The bacterial cell shows three characteristic equivalent dielectric constant values, namely, εr,bac1=2.6±0.2, εr,bac2=3.6±0.4 and εr,bac3=4.9±0.5, which enable identifying different dielectric properties of the cell wall and of the cytoplasmatic region, as well as, the existence of variations in the dielectric constant along the bacterial cell wall itself. Scanning Dielectric Force Volume Microscopy is expected to have an important impact in Materials and Life Sciences where the mapping of the dielectric properties of samples showing complex nanoscale topographies is often needed.

JTD


Lozano, H., Millán-Solsona, R., Fabregas, R., Gomila, G., (2019). Sizing single nanoscale objects from polarization forces Scientific Reports 9, (1), 14142

Sizing natural or engineered single nanoscale objects is fundamental in many areas of science and technology. To achieve it several advanced microscopic techniques have been developed, mostly based on electron and scanning probe microscopies. Still for soft and poorly adhered samples the existing techniques face important challenges. Here, we propose an alternative method to size single nanoscale objects based on the measurement of its electric polarization. The method is based on Electrostatic Force Microscopy measurements combined with a specifically designed multiparameter quantification algorithm, which gives the physical dimensions (height and width) of the nanoscale object. The proposed method is validated with ~50 nm diameter silver nanowires, and successfully applied to ~10 nm diameter bacterial polar flagella, an example of soft and poorly adhered nanoscale object. We show that an accuracy comparable to AFM topographic imaging can be achieved. The main advantage of the proposed method is that, being based on the measurement of long-range polarization forces, it can be applied without contacting the sample, what is key when considering poorly adhered and soft nanoscale objects. Potential applications of the proposed method to a wide range of nanoscale objects relevant in Material, Life Sciences and Nanomedicine is envisaged.

JTD Keywords: Characterization and analytical techniques, Imaging techniques


Checa, M., Millan-Solsona, R., Gomila, G., (2019). Frequency-dependent force between ac-voltage-biased plates in electrolyte solutions Physical Review E 100, (2), 022604

We analyze the frequency dependence of the force between ac-voltage-biased plates in electrolyte solutions. To this end we solve analytically the Poisson-Nernst-Planck transport model in the dilute concentration and low voltage regime for a 1:1 symmetric electrolyte with blocking electrodes under a dc+ac applied voltage. The total force, which is the resultant of the electric and osmotic forces, shows a complex dependence on plate separation, frequency, ion concentration, and compact layer properties, different from that predicted from electrostatic current models or equivalent circuit models, due to the relevance of the osmotic force contribution in almost the whole range of frequencies. For the total dc force, we show that it decays at fixed ion concentration, linearly with plate separation for separations larger than a few times the Debye screening length. This linear dependence is due to the assumption about the conservation of the number of ions in the system. Moreover, the 1ω and 2ω ac harmonics of the total force show a broad peak at intermediate frequencies; it is centered at about the inverse of the charging time of the double layer capacitance, and covers the frequency range between the inverse of the diffusion time and the inverse of the electrolyte dielectric relaxation time. Finally, the 1ω ac harmonic component attains its high frequency asymptotic value at frequencies much higher than the inverse of the electrolyte dielectric relaxation time due to the very slow relaxation of the osmotic 1ω harmonic component at high frequencies. The derived analytical expressions for the total force remain valid up to voltages of the order of the thermal voltage, as has been assessed by means of numerical calculations. The numerical calculations are also used to explore the onset of higher force harmonics for larger applied voltages. Understanding the frequency dependence of the force acting on voltage-biased plates in electrolyte solutions can be of relevance for electrical actuation strategies in microelectromechanical systems and for the interpretation of some emerging electric scanning probe force microscopy techniques operating in electrolyte solutions.

JTD Keywords: Electrochemistry, Statistical physics


Fumagalli, L., Esfandiar, A., Fabregas, R., Hu, S., Ares, P., Janardanan, A., Yang, Q., Radha, B., Taniguchi, T., Watanabe, K., Gomila, G., Novoselov, K. S., Geim, A. K., (2018). Anomalously low dielectric constant of confined water Science 360, (6395), 1339-1342

Theoretical studies predict that the inhibition of rotational motion of water near a solid surface will decrease its local dielectric constant. Fumagalli et al. fabricated thin channels in insulating hexagonal boron nitride on top of conducting graphene layers (see the Perspective by Kalinin). The channels, which varied in height from 1 to 300 nanometers, were filled with water and capped with a boron nitride layer. Modeling of the capacitance measurements made with an atomic force microscope tip revealed a surface-layer dielectric constant of 2, compared with the bulk value of 80 for water.Science, this issue p. 1339; see also p. 1302The dielectric constant ε of interfacial water has been predicted to be smaller than that of bulk water (ε ≈ 80) because the rotational freedom of water dipoles is expected to decrease near surfaces, yet experimental evidence is lacking. We report local capacitance measurements for water confined between two atomically flat walls separated by various distances down to 1 nanometer. Our experiments reveal the presence of an interfacial layer with vanishingly small polarization such that its out-of-plane ε is only ~2. The electrically dead layer is found to be two to three molecules thick. These results provide much-needed feedback for theories describing water-mediated surface interactions and the behavior of interfacial water, and show a way to investigate the dielectric properties of other fluids and solids under extreme confinement.

JTD


Lozano, Helena, Fabregas, Rene, Blanco, Núria, Millán, Rubén, Torrents, Eduard, Fumagalli, Laura, Gomila, Gabriel, (2018). Dielectric constant of flagellin proteins measured by scanning dielectric microscopy Nanoscale 10, 19188-19194

The dielectric constant of flagellin proteins in flagellar bacterial filaments ~10-20 nm in diameter is measured using Scanning Dielectric Microscopy. We obtain for two different bacterial species (Shewanella oneidensis MR-1 and Pseudo-monas aeruginosa PAO1) similar relative dielectric constant values εSo = 4.3 ± 0.6 and εPa = 4.5 ± 0.7, respectively, despite their different structure and aminoacid sequence. Present results show the applicability of Scanning Dielectric Microscopy to nanoscale filamentous protein complexes, and to general 3D macromolecular protein geometries, thus opening new avenues to study the relationship between dielectric response and protein structure and function.

JTD


Dols-Perez, Aurora, Fumagalli, Laura, Gomila, Gabriel, (2018). Interdigitation in spin-coated lipid layers in air Colloids and Surfaces B: Biointerfaces 172, 400-406

In this study, we show that dry saturated phospholipid layers prepared by the spin-coating technique could present thinner regions associated to interdigitated phases under some conditions. The morphological characteristics of lipid layers of saturated phosphocholines, such as dilauroylphosphatidylcholine (DLPC), dimyristoylphosphatidylcholine (DMPC), dipalmitoylphosphatidylcholine (DPPC) and distearoylphosphatidylcholine (DSPC), have been measured by Atomic Force Microscopy and revealed that the presence of interdigitated regions is not induced by the same parameters that induce them in hydrated samples. To achieve these results the effect of the lipid hidrocabonated chain length, the presence of alcohol in the coating solution, the spinning velocity and the presence of cholesterol were tested. We showed that DPPC and DSPC bilayers, on the one side, can show structures with similar height than interdigitated regions observed in hydrated samples, while, on the other side, DLPC and DMPC tend to show no evidence of interdigitation. Results indicate that the presence of interdigitated areas is due to the presence of lateral tensions and, hence, that they can be eliminated by releasing these tensions by, for instance, the addition of cholesterol. These results demonstrate that interdigitation in lipid layers is a rather general phenomena and can be observed in lipid bilayers in dry conditions.

JTD Keywords: Spin-coating, Lipid layers, Atomic Force Microscopy, Interdigitation


Crespo, Anna, Pedraz, Lucas, Van Der Hofstadt, Marc, Gomila, Gabriel, Torrents, Eduard, (2017). Regulation of ribonucleotide synthesis by the Pseudomonas aeruginosa two-component system AlgR in response to oxidative stress Scientific Reports 7, (1), 17892

Ribonucleotide reductases (RNR) catalyze the last step of deoxyribonucleotide synthesis, and are therefore essential to DNA-based life. Three forms of RNR exist: classes I, II, and III. While eukaryotic cells use only class Ia RNR, bacteria can harbor any combination of classes, granting them adaptability. The opportunistic pathogen Pseudomonas aeruginosa surprisingly encodes all three classes, allowing it to thrive in different environments. Here we study an aspect of the complex RNR regulation whose molecular mechanism has never been elucidated, the well-described induction through oxidative stress, and link it to the AlgZR two-component system, the primary regulator of the mucoid phenotype. Through bioinformatics, we identify AlgR binding locations in RNR promoters, which we characterize functionally through EMSA and physically through AFM imaging. Gene reporter assays in different growth models are used to study the AlgZR-mediated control on the RNR network under various environmental conditions and physiological states. Thereby, we show that the two-component system AlgZR, which is crucial for bacterial conversion to the mucoid phenotype associated with chronic disease, controls the RNR network and directs how the DNA synthesis pathway is modulated in mucoid and non-mucoid biofilms, allowing it to respond to oxidative stress.

JTD Keywords: Bacterial genes, Bacteriology, Pathogens


Biagi, Maria Chiara, Badino, Giorgio, Fabregas, Rene, Gramse, Georg, Fumagalli, Laura, Gomila, Gabriel, (2017). Direct mapping of the electric permittivity of heterogeneous non-planar thin films at gigahertz frequencies by scanning microwave microscopy Physical Chemistry Chemical Physics , 19, (5), 3884-3893

We obtained maps of the electric permittivity at ~19 GHz frequencies on non-planar thin film heterogeneous samples by means of combined atomic force-scanning microwave microscopy (AFM-SMM). We show that the electric permittivity maps can be obtained directly from the capacitance images acquired in contact mode, after removing the topographic cross-talk effects. This result demonstrates the possibility to identify the electric permittivity of different materials in a thin film sample irrespectively of their thickness by just direct imaging and processing. We show, in addition, that quantitative maps of the electric permittivity can be obtained with no need of any theoretical calculation or complex quantification procedure when the electric permittivity of one of the materials is known. To achieve these results the use of contact mode imaging is a key factor. For non-contact imaging modes the effects of the local sample thickness and of the imaging distance makes the interpretation of the capacitance images in terms of the electric permittivity properties of the materials much more complex. Present results represent a substantial contribution to the field of nanoscale microwave dielectric characterization of thin film materials with important implications for the characterization of novel 3D electronic devices and 3D nanomaterials.

JTD


Van Der Hofstadt, Marc, Fabregas, Rene, Millan, Ruben, Juarez, Antonio, Fumagalli, Laura, Gomila, Gabriel, (2016). Internal hydration properties of single bacterial endospores probed by electrostatic force microscopy ACS Nano 10, (12), 11327–11336

We show that the internal hydration properties of single Bacillus cereus endospores in air under different relative humidity (RH) conditions can be determined through the measurement of its electric permittivity by means of quantitative electrostatic force microscopy (EFM). We show that an increase in the RH from 0% to 80% induces a large increase in the equivalent homogeneous relative electric permittivity of the bacterial endospores, from ~4 up to ~17, accompanied only by a small increase in the endospore height, of just a few nanometers. These results correlate the increase of the moisture content of the endospore with the corresponding increase of environmental RH. 3D finite element numerical calculations, which include the internal structure of the endospores, indicate that the moisture is mainly accumulated in the external layers of the endospore, hence preserving the core of the endospore at low hydration levels. This mechanism is different from what we observe for vegetative bacterial cells of the same species, in which the cell wall at high humid atmospheric conditions is not able to preserve the cytoplasmic region at low hydration levels. These results show the potential of quantitative EFM under environmental humidity control to study the hygroscopic properties of small scale biological (and non-biological) entities and to determine its internal hydration state. A better understanding of nano-hygroscopic properties can be of relevance in the study of essential biological processes and in the design of bio-nanotechnological applications.

JTD


Biagi, Maria Chiara, Fabregas, Rene, Gramse, Georg, Van Der Hofstadt, Marc, Juárez, Antonio, Kienberger, Ferry, Fumagalli, Laura, Gomila, Gabriel, (2016). Nanoscale electric permittivity of single bacterial cells at gigahertz frequencies by scanning microwave microscopy ACS Nano 10, (1), 280-288

We quantified the electric permittivity of single bacterial cells at microwave frequencies and nanoscale spatial resolution by means of near-field scanning microwave microscopy. To this end, calibrated complex admittance images have been obtained at ~19 GHz and analyzed with a methodology that removes the nonlocal topographic cross-talk contributions and thus provides quantifiable intrinsic dielectric images of the bacterial cells. Results for single Escherichia coli cells provide a relative electric permittivity of ~4 in dry conditions and ~20 in humid conditions, with no significant loss contributions. Present findings, together with the ability of microwaves to penetrate the cell membrane, open an important avenue in the microwave label-free imaging of single cells with nanoscale spatial resolution.

JTD


Van Der Hofstadt, M., Fabregas, R., Biagi, M.C., Fumagalli, L., Gomila, G., (2016). Nanoscale dielectric microscopy of non-planar samples by lift-mode electrostatic force microscopy Nanotechnology 27, (40), 405706

Lift-mode electrostatic force microscopy (EFM) is one of the most convenient imaging modes to study the local dielectric properties of non-planar samples. Here we present the quantitative analysis of this imaging mode. We introduce a method to quantify and subtract the topographic crosstalk from the lift-mode EFM images, and a 3D numerical approach that allows for extracting the local dielectric constant with nanoscale spatial resolution free from topographic artifacts. We demonstrate this procedure by measuring the dielectric properties of micropatterned SiO 2 pillars and of single bacteria cells, thus illustrating the wide applicability of our approach from materials science to biology.

JTD


Dols-Perez, Aurora, Gramse, Georg, Calo, Annalisa, Gomila, Gabriel, Fumagalli, Laura, (2015). Nanoscale electric polarizability of ultrathin biolayers on insulator substrates by electrostatic force microscopy Nanoscale 7, 18327-18336

We measured and quantified the local electric polarization properties of ultrathin (~ 5 nm) biolayers on mm-thick mica substrates. We achieved it by scanning a sharp conductive tip (< 10 nm radius) of an electrostatic force microscope over the biolayers and quantifying sub-picoNewton electric polarization forces with a sharp-tip model implemented using finite-element numerical calculations. We obtained relative dielectric constants ?r = 3.3, 2.4 and 1.9 for bacteriorhodopsin, dioleoylphosphatidylcholine (DOPC) and cholesterol layers, chosen as representative of the main cell membrane components, with an error below 10% and a spatial resolution down to ~ 50 nm. The ability of using insulating substrates common in biophysics research, such as mica or glass, instead of metallic substrates, offers both a general platform to determine the dielectric properties of biolayers and a wider compatibility with other characterization techniques, such as optical microscopy. This opens up new possibilities for biolayer research at the nanoscale, including nanoscale label-free composition mapping.

JTD


Van Der Hofstadt, M., Hüttener, M., Juárez, A., Gomila, G., (2015). Nanoscale imaging of the growth and division of bacterial cells on planar substrates with the atomic force microscope Ultramicroscopy , 154, 29-36

Abstract With the use of the atomic force microscope (AFM), the Nanomicrobiology field has advanced drastically. Due to the complexity of imaging living bacterial processes in their natural growing environments, improvements have come to a standstill. Here we show the in situ nanoscale imaging of the growth and division of single bacterial cells on planar substrates with the atomic force microscope. To achieve this, we minimized the lateral shear forces responsible for the detachment of weakly adsorbed bacteria on planar substrates with the use of the so called dynamic jumping mode with very soft cantilever probes. With this approach, gentle imaging conditions can be maintained for long periods of time, enabling the continuous imaging of the bacterial cell growth and division, even on planar substrates. Present results offer the possibility to observe living processes of untrapped bacteria weakly attached to planar substrates.

JTD Keywords: Atomic Force Microscope (AFM), Living cell imaging, Bacteria division, Gelatine immobilization, Dynamic jumping mode


Botaya, Luis, Otero, Jorge, González, Laura, Coromina, Xavier, Gomila, Gabriel, Puig-Vidal, Manel, (2015). Quartz tuning fork-based conductive atomic force microscope with glue-free solid metallic tips Sensors and Actuators A: Physical , 232, 259-266

Abstract Here, we devise a conductive Atomic Force Microscope (C-AFM) based on quartz tuning forks (QTFs) and metallic tips capable of simultaneously imaging the topography and conductance of a sample with nanoscale spatial resolution. The system is based on a header design which allows the metallic tip to be placed in tight and stable mechanical contact with the QTF without the need to use any glue. This allows electrical measurements to be taken with an electrically excited QTF with the two prongs free. The amplitude oscillation of the QTF is used to control the tip-sample distance and to acquire the topographic images. Meanwhile, the metallic tip is connected to a current–voltage amplifier circuit to measure the tip-sample field emission/tunneling current and to produce the conductive images. This method allows decoupled electrical measurement of the topography and electrical properties of the sample. The results we obtain from calibration samples demonstrate the feasibility of this measurement method and the adequacy of the performance of the system.

JTD Keywords: AFM, Conductive AFM, Quartz tuning fork


Esteban-Ferrer, Daniel, Edwards, Martin Andrew, Fumagalli, Laura, Juarez, Antonio, Gomila, Gabriel, (2014). Electric polarization properties of single bacteria measured with electrostatic force microscopy ACS Nano 8, (10), 9843–9849

We quantified the electrical polarization properties of single bacterial cells using electrostatic force microscopy. We found that the effective dielectric constant, εr,eff, for the four bacterial types investigated (Salmonella typhimurium, Escherchia coli, Lactobacilus sakei, and Listeria innocua) is around 3–5 under dry air conditions. Under ambient humidity, it increases to εr,eff ~ 6–7 for the Gram-negative bacterial types (S. typhimurium and E. coli) and to εr,eff ~ 15–20 for the Gram-positive ones (L. sakei and L. innocua). We show that the measured effective dielectric constants can be consistently interpreted in terms of the electric polarization properties of the biochemical components of the bacterial cell compartments and of their hydration state. These results demonstrate the potential of electrical studies of single bacterial cells.

JTD


Cuervo, A., Dans, P. D., Carrascosa, J. L., Orozco, M., Gomila, G., Fumagalli, L., (2014). Direct measurement of the dielectric polarization properties of DNA Proceedings of the National Academy of Sciences of the United States of America 111, (35), E3624-E3630

The electric polarizability of DNA, represented by the dielectric constant, is a key intrinsic property that modulates DNA interaction with effector proteins. Surprisingly, it has so far remained unknown owing to the lack of experimental tools able to access it. Here, we experimentally resolved it by detecting the ultraweak polarization forces of DNA inside single T7 bacteriophages particles using electrostatic force microscopy. In contrast to the common assumption of low-polarizable behavior like proteins (εr ~ 2–4), we found that the DNA dielectric constant is ~ 8, considerably higher than the value of ~ 3 found for capsid proteins. State-of-the-art molecular dynamic simulations confirm the experimental findings, which result in sensibly decreased DNA interaction free energy than normally predicted by Poisson–Boltzmann methods. Our findings reveal a property at the basis of DNA structure and functions that is needed for realistic theoretical descriptions, and illustrate the synergetic power of scanning probe microscopy and theoretical computation techniques.

JTD Keywords: Atomic force microscopy, Atomistic simulations, DNA packaging, DNA-ligand binding, Poisson-Boltzmann equation, capsid protein, DNA, double stranded DNA, amino acid composition, article, atomic force microscopy, bacteriophage, bacteriophage T7, dielectric constant, dipole, DNA binding, DNA packaging, DNA structure, electron microscopy, ligand binding, nonhuman, polarization, priority journal, protein analysis, protein DNA interaction, scanning probe microscopy, static electricity, virion, virus capsid, virus particle, atomic force microscopy, atomistic simulations, DNA packaging, DNA-ligand binding, Poisson-Boltzmann equation, Bacteriophage T7, Capsid, Cations, Dielectric Spectroscopy, DNA, DNA, Viral, DNA-Binding Proteins, Electrochemical Techniques, Ligands, Microscopy, Atomic Force, Models, Chemical, Nuclear Proteins


Caló, A., Reguera, D., Oncins, G., Persuy, M. A., Sanz, G., Lobasso, S., Corcelli, A., Pajot-Augy, E., Gomila, G., (2014). Force measurements on natural membrane nanovesicles reveal a composition-independent, high Young's modulus Nanoscale 6, (4), 2275-2285

Mechanical properties of nano-sized vesicles made up of natural membranes are crucial to the development of stable, biocompatible nanocontainers with enhanced functional, recognition and sensing capabilities. Here we measure and compare the mechanical properties of plasma and inner membrane nanovesicles ∼80 nm in diameter obtained from disrupted yeast Saccharomyces cerevisiae cells. We provide evidence of a highly deformable behaviour for these vesicles, able to support repeated wall-to-wall compressions without irreversible deformations, accompanied by a noticeably high Young's modulus (∼300 MPa) compared to that obtained for reconstituted artificial liposomes of similar size and approaching that of some virus particles. Surprisingly enough, the results are approximately similar for plasma and inner membrane nanovesicles, in spite of their different lipid compositions, especially on what concerns the ergosterol content. These results point towards an important structural role of membrane proteins in the mechanical response of natural membrane vesicles and open the perspective to their potential use as robust nanocontainers for bioapplications.

JTD


Dols-Perez, A., Fumagalli, L., Gomila, G., (2014). Structural and nanomechanical effects of cholesterol in binary and ternary spin-coated single lipid bilayers in dry conditions Colloids and Surfaces B: Biointerfaces 116, 295-302

We investigate the effects of Cholesterol (Chol) in the structural and nanomechanical properties of binary and ternary spin-coated single lipid bilayers made of Dioleoylphosphatidylcholine (DOPC) and Sphingomyelin (SM) in dry conditions. We show that for the DOPC/Chol bilayers, Chol induces an initial increase of the bilayer thickness, followed by decrease for concentrations above 30% Chol. The mechanical properties, instead, appear practically insensitive to the Chol content. For the SM/Chol bilayers we have observed both the thinning of the bilayer and the decrease of the force necessary to break it for Chol content above 40. mol%. In both binary mixtures phase separation is not observed. For ternary single bilayers of DOPC/SM/Chol, Chol induces phase segregation and the formation of domains resembling lipid rafts. The domains show a thickness and mechanical response clearly distinct from the surrounding phase and dependent on the relative Chol content. Based on the results obtained for the binary mixtures, DOPC- and SM-enriched domains can be identified. We highlight that many of the effects of Chol reported here for the dry multicomponent single lipid bilayers resemble closely those observed in hydrated bilayers, thus offering an additional insight into their properties.

JTD Keywords: AFM, Air-stable lipid layer, Force spectroscopy, Lipid raft, Spin-coating


Gramse, G., Kasper, M., Fumagalli, L., Gomila, G., Hinterdorfer, P., Kienberger, F., (2014). Calibrated complex impedance and permittivity measurements with scanning microwave microscopy Nanotechnology 25, (14), 145703 (8)

We present a procedure for calibrated complex impedance measurements and dielectric quantification with scanning microwave microscopy. The calibration procedure works in situ directly on the substrate with the specimen of interest and does not require any specific calibration sample. In the workflow tip-sample approach curves are used to extract calibrated complex impedance values and to convert measured S11 reflection signals into sample capacitance and resistance images. The dielectric constant of thin dielectric SiO2 films were determined from the capacitance images and approach curves using appropriate electrical tip-sample models and the εr value extracted at f = 19.81 GHz is in good agreement with the nominal value of εr ∼ 4. The capacitive and resistive material properties of a doped Si semiconductor sample were studied at different doping densities and tip-sample bias voltages. Following a simple serial model the capacitance-voltage spectroscopy curves are clearly related to the semiconductor depletion zone while the resistivity is rising with falling dopant density from 20 Ω to 20 kΩ. The proposed procedure of calibrated complex impedance measurements is simple and fast and the accuracy of the results is not affected by varying stray capacitances. It works for nanoscale samples on either fully dielectric or highly conductive substrates at frequencies between 1 and 20 GHz.

JTD Keywords: Complex impedance, Dielectric constant, Nanotechnology: calibration, Resistivity, Scanning microwave microscopy


Gomila, G., Gramse, G., Fumagalli, L., (2014). Finite-size effects and analytical modeling of electrostatic force microscopy applied to dielectric films Nanotechnology 25, (25), 255702 (11)

A numerical analysis of the polarization force between a sharp conducting probe and a dielectric film of finite lateral dimensions on a metallic substrate is presented with the double objective of (i) determining the conditions under which the film can be approximated by a laterally infinite film and (ii) proposing an analytical model valid in this limit. We show that, for a given dielectric film, the critical diameter above which the film can be modeled as laterally infinite depends not only on the probe geometry, as expected, but mainly on the film thickness. In particular, for films with intermediate to large thicknesses (>100 nm), the critical diameter is nearly independent from the probe geometry and essentially depends on the film thickness and dielectric constant following a relatively simple phenomenological expression. For films that can be considered as laterally infinite, we propose a generalized analytical model valid in the thin-ultrathin limit (<20-50 nm) that reproduces the numerical calculations and the experimental data. Present results provide a general framework under which accurate quantification of electrostatic force microscopy measurements on dielectric films on metallic substrates can be achieved.

JTD Keywords: Dielectric constant, Dielectric films, Electrostatic force microscopy, Quantification, Analytical models, Electric force microscopy, Electrostatic force, Film thickness, Permittivity, Probes, Substrates, Ultrathin films, Accurate quantifications, Electrostatic force microscopy, Finite size effect, Lateral dimension, Metallic substrate, Numerical calculation, Polarization forces, Quantification, Dielectric films


Fumagalli, L., Edwards, Martin Andrew, Gomila, G., (2014). Quantitative electrostatic force microscopy with sharp silicon tips Nanotechnology 25, (49), 495701 (9)

Electrostatic force microscopy (EFM) probes are typically coated in either metal (radius ~ 30 nm) or highly-doped diamond (radius ~ 100 nm). Highly-doped silicon probes, which offer a sharpened and stable tip apex (radius ~ 1–10 nm) and are usually used only in standard atomic force microscopy, have been recently shown to allow enhanced lateral resolution in quantitative EFM and its application for dielectric constant measurement. Here we present the theoretical modelling required to quantitatively interpret the electrostatic force between these sharpened tips and samples. In contrast to a sphere-capped cone geometry used to describe metal/diamond-coated tips, modelling a sharpened silicon tip requires a geometry comprised of a cone with two different angles. Theoretical results are supported by experimental measurements of metallic substrates and ~10 nm radius dielectric nanoparticles. This work is equally applicable to EFM and other electrical scanned probe techniques, where it allows quantifying electrical properties of nanomaterials and 3D nano-objects with higher resolution.

JTD Keywords: AFM, Dielectric constant, EFM, Dielectrics, Nanoparticles, Sharp tips


Castillo-Fernandez, O., Rodriguez-Trujillo, R., Gomila, G., Samitier, J., (2014). High-speed counting and sizing of cells in an impedance flow microcytometer with compact electronic instrumentation Microfluidics and Nanofluidics , 16, (1-2), 91-99

Here we describe a high-throughput impedance flow cytometer on a chip. This device was built using compact and inexpensive electronic instrumentation. The system was used to count and size a mixed cell sample containing red blood cells and white blood cells. It demonstrated a counting capacity of up to ~500 counts/s and was validated through a synchronised high-speed optical detection system. In addition, the device showed excellent discrimination performance under high-throughput conditions.

JTD Keywords: Electronics, Impedance, Microcytometry, Microfluidics, Red blood cells (RBCs), White blood cells (WBCs)


Birhane, Y., Otero, J., Pérez-Murano, F., Fumagalli, L., Gomila, G., Bausells, J., (2014). Batch fabrication of insulated conductive scanning probe microscopy probes with reduced capacitive coupling Microelectronic Engineering , 119, 44-47

We report a novel fabrication process for the batch fabrication of insulated conductive scanning probe microscopy (SPM) probes for electrical and topographic characterization of soft samples in liquid media at the nanoscale. The whole SPM probe structure is insulated with a dielectric material except at the very tip end and at the contact pad area to minimize the leakage current in liquid. Additionally, the geometry of the conducting layer in the probe cantilever and substrate is engineered to reduce the parasitic capacitance coupling with the sample. The electrical characterization of the probes has shown that parasitic capacitances are significantly reduced as compared to fully metallized cantilevers.

JTD Keywords: Conductive scanning probe microscopy (C-SPM), EFM, SECM, SECM-AFM, SIM


Gramse, G., Dols-Perez, A., Edwards, M. A., Fumagalli, L., Gomila, G., (2013). Nanoscale measurement of the dielectric constant of supported lipid bilayers in aqueous solutions with electrostatic force microscopy Biophysical Journal , 104, (6), 1257-1262

We present what is, to our knowledge, the first experimental demonstration of dielectric constant measurement and quantification of supported lipid bilayers in electrolyte solutions with nanoscale spatial resolution. The dielectric constant was quantitatively reconstructed with finite element calculations by combining thickness information and local polarization forces which were measured using an electrostatic force microscope adapted to work in a liquid environment. Measurements of submicrometric dipalmitoylphosphatidylcholine lipid bilayer patches gave dielectric constants of εr ∼ 3, which are higher than the values typically reported for the hydrophobic part of lipid membranes (εr ∼ 2) and suggest a large contribution of the polar headgroup region to the dielectric response of the lipid bilayer. This work opens apparently new possibilities in the study of biomembrane electrostatics and other bioelectric phenomena.

JTD


Gomila, G., Esteban-Ferrer, D., Fumagalli, L., (2013). Quantification of the dielectric constant of single non-spherical nanoparticles from polarization forces: Eccentricity effects Nanotechnology 24, (50), 505713

We analyze by means of finite-element numerical calculations the polarization force between a sharp conducting tip and a non-spherical uncharged dielectric nanoparticle with the objective of quantifying its dielectric constant from electrostatic force microscopy (EFM) measurements. We show that for an oblate spheroid nanoparticle of given height the strength of the polarization force acting on the tip depends linearly on the eccentricity, e, of the nanoparticle in the small eccentricity and low dielectric constant regimes (1 < e < 2 and 1 < εr; < 10), while for higher eccentricities (e > 2) the dependence is sub-linear and finally becomes independent of e for very large eccentricities (e > 30). These results imply that a precise account of the nanoparticle shape is required to quantify EFM data and obtain the dielectric constants of non-spherical dielectric nanoparticles. Experimental results obtained on polystyrene, silicon dioxide and aluminum oxide nanoparticles and on single viruses are used to illustrate the main findings.

JTD


Gramse, G., Edwards, M.A., Fumagalli, L., Gomila, G., (2013). Theory of amplitude modulated electrostatic force microscopy for dielectric measurements in liquids at MHz frequencies Nanotechnology 24, (41), 415709

A theoretical analysis of amplitude modulated electrostatic force microscopy (AM-EFM) in liquid media at MHz frequencies, based on a simple tip–sample parallel plate model, is presented. The model qualitatively explains the main features of AM-EFM in liquid media and provides a simple explanation of how the measured electric forces are affected by: the frequency of the applied voltage, the tip–sample distance, the ionic concentration, the relative dielectric constant of the solution, and the relative dielectric constant and thickness of the sample. These results provide a simple framework for the design of AM-EFM measurements for localized dielectric characterization in liquid media.

JTD


Dols-Perez, A., Sisquella, X., Fumagalli, L., Gomila, G., (2013). Optical visualization of ultrathin mica flakes on semitransparent gold substrates Nanoscale Research Letters 8, (1), 1-5

We show that optical visualization of ultrathin mica flakes on metallic substrates is viable using semitransparent gold as substrates. This enables to easily localize mica flakes and rapidly estimate their thickness directly on gold substrates by conventional optical reflection microscopy. We experimentally demonstrate it by comparing optical images with atomic force microscopy images of mica flakes on semitransparent gold. Present results open the possibility for simple and rapid characterization of thin mica flakes as well as other thin sheets directly on metallic substrates.

JTD Keywords: Atomic force, Conductive AFM, Gold substrates, Metallic substrate, Optical image, Optical reflection, Optical visualization, Ultrathin layers, Atomic force microscopy, Geometrical optics, Gold, Mica, Optical microscopy, Substrates


Fumagalli, Laura, Esteban-Ferrer, Daniel, Cuervo, Ana, Carrascosa, Jose L., Gomila, Gabriel, (2012). Label-free identification of single dielectric nanoparticles and viruses with ultraweak polarization forces Nature Materials Nature Publishing Group 11, (9), 743-826

Label-free detection of the material composition of nanoparticles could be enabled by the quantification of the nanoparticles’ inherent dielectric response to an applied electric field. However, the sensitivity of dielectric nanoscale objects to geometric and non-local effects makes the dielectric response extremely weak. Here we show that electrostatic force microscopy with sub-piconewton resolution can resolve the dielectric constants of single dielectric nanoparticles without the need for any reference material, as well as distinguish nanoparticles that have an identical surface but different inner composition. We unambiguously identified unlabelled ~10unm nanoparticles of similar morphology but different low-polarizable materials, and discriminated empty from DNA-containing virus capsids. Our approach should make the in situ characterization of nanoscale dielectrics and biological macromolecules possible.

JTD Keywords: Biological materials, Nanoscale materials, Characterisation and analytical techniques, Computation, modelling and theory


Calò, A., Sanmartí-Espinal, M., Iavicoli, P., Persuy, M. A., Pajot-Augy, E., Gomila, G., Samitier, J., (2012). Diffusion-controlled deposition of natural nanovesicles containing G-protein coupled receptors for biosensing platforms Soft Matter 8, (46), 11632-11643

Natural vesicles produced from genetically engineered cells with tailored membrane receptor composition are promising building blocks for sensing biodevices. This is particularly true for the case of G-protein coupled receptors (GPCRs) present in many sensing processes in cells, whose functionality crucially depends on their lipid environment. However, the controlled production of natural vesicles containing GPCRs and their reproducible deposition on biosensor surfaces are among the outstanding challenges in the road map to realize practical biomolecular devices based on GPCRs. In this work we present the production and characterization of membrane nanovesicles from Saccharomyces cerevisiae containing heterologously expressed olfactory receptors - a member of the family of GPCRs - and study their deposition onto substrates used as biosensor supports. We show by direct observation with Atomic Force Microscopy that nanovesicles deposit and flatten without rupturing on glass substrates following approximately a diffusive law. We show that surface coverages larger than 20-25% of the substrate can be reproducibly achieved under practical nanovesicle concentrations and reasonable time scales, while keeping to the minimum the presence of background residuals coming from the nanovesicles production process. Surface chemistry modification of gold substrates indicates a higher affinity of natural nanovesicles for acid modified surfaces as compared to amino or alcohol modified surfaces. Present results constitute an important step in the practical realization of biosensor devices based on natural nanovesicles integrating G-protein coupled membrane receptors.

JTD


Gramse, G., Gomila, G., Fumagalli, L., (2012). Quantifying the dielectric constant of thick insulators by electrostatic force microscopy: effects of the microscopic parts of the probe Nanotechnology 23, (20), 205703

We present a systematic analysis of the effects that the microscopic parts of electrostatic force microscopy probes (the cone and cantilever) have on the electrostatic interaction between the tip apex and thick insulating substrates (thickness>100mum). We discuss how these effects can influence the measurement and quantification of the local dielectric constant of the substrates. We propose and experimentally validate a general methodology that takes into account the influence of the cone and the cantilever, thus enabling us to obtain very accurate values of the dielectric constants of thick insulators.

JTD Keywords: Polarization, Samples


Gramse, G., Edwards, M. A., Fumagalli, L., Gomila, G., (2012). Dynamic electrostatic force microscopy in liquid media Applied Physics Letters , 101, (21), 213108

We present the implementation of dynamic electrostatic force microscopy in liquid media. This implementation enables the quantitative imaging of local dielectric properties of materials in electrolyte solutions with nanoscale spatial resolution. Local imaging capabilities are obtained by probing the frequency-dependent and ionic concentration-dependent electrostatic forces at high frequency (>1 MHz), while quantification of the interaction forces is obtained with finite-element numerical calculations. The results presented open a wide range of possibilities in a number of fields where the dielectric properties of materials need to be probed at the nanoscale and in a liquid environment.

JTD


Dols-Perez, Aurora, Fumagalli, Laura, Cohen Simonsen, Adam, Gomila, Gabriel, (2011). Ultrathin spin-coated dioleoylphosphatidylcholine lipid layers in dry conditions: A combined atomic force microscopy and nanomechanical study Langmuir 27, (21), 13165-13172

Atomic force microscopy (AFM) has been used to study the structural and mechanical properties of low concentrated spin-coated dioleoylphosphatidylcholine (DOPC) layers in dry environment (RH approximate to 0%) at the nanoscale. It is shown that for concentrations in the 0.1-1 mM range the structure of the DOPC spin-coated samples consists of an homogeneous lipid monolayer similar to 1.3 nm thick covering the whole substrate on top of which lipid bilayer (or multilayer) micro- and nanometric patches and rims are formed. The thickness of the bilayer structures is found to be similar to 4.5 nm (or multiples of this value for multilayer structures), while the lateral dimensions range from micrometers to tens of nanometer depending on the lipid concentration. The force required to break a bilayer (breakthrough force) is found to be similar to 0.24 nN. No dependence of the mechanical values on the lateral dimensions of the bilayer structures is evidenced. Remarkably, the thickness and breakthrough force values of the bilayers measured in dry environment are very similar to values reported in the literature for supported DOPC bilayers in pure water.

JTD


Fumagalli, L., Gramse, G., Esteban-Ferrer, D., Edwards, M. A., Gomila, G., (2010). Quantifying the dielectric constant of thick insulators using electrostatic force microscopy Applied Physics Letters , 96, (18), 183107

Quantitative measurement of the low-frequency dielectric constants of thick insulators at the nanoscale is demonstrated utilizing ac electrostatic force microscopy combined with finite-element calculations based on a truncated cone with hemispherical apex probe geometry. The method is validated on muscovite mica, borosilicate glass, poly(ethylene naphthalate), and poly(methyl methacrylate). The dielectric constants obtained are essentially given by a nanometric volume located at the dielectric-air interface below the tip, independently of the substrate thickness, provided this is on the hundred micrometer-length scale, or larger.

JTD Keywords: Borosilicate glasses, Finite element analysis, Insulating thin films, Mica, Nanostructured materials, Permittivity, Polymers, Scanning probe microscopy


Toset, J., Gomila, G., (2010). Three-dimensional manipulation of gold nanoparticles with electro-enhanced capillary forces Applied Physics Letters , 96, (4), 043117

We demonstrate the possibility to manipulate 25 nm radius gold nanoparticles in the three spatial dimensions with an atomic force microscope with the use of electroenhanced capillary forces. We show that an enhanced water-bridge can be electrostatically induced between a conducting probe and a metallic nanoparticle by the application of a voltage pulse, which is able to exert a pulling capillary force on the nanoparticle strong enough to detach it from the substrate. The nanoparticle can then be moved, attached to the probe, and placed back to the desired location on the substrate simply by contacting it.

JTD Keywords: Atomic force microscopy, Capillarity, Gold, Nanoparticles, Nanotechnology


Sanmarti, M., Iavicoli, P., Pajot-Augy, E., Gomila, G., Samitier, J., (2010). Human olfactory receptors immobilization on a mixed self assembled monolayer for the development of a bioelectronic nose Procedia Engineering (EUROSENSOR XXIV CONFERENCE) 24th Eurosensor Conference (ed. Jakoby, B., Vellekoop, M.J.), Elsevier Science (Linz, Austria) 5, 786-789

The present work focuses on the development of an immunosensing surface to build a portable olfactory system for the detection of complex mixture of odorants. Homogeneous cell derived vesicles expressing the olfactory receptors were produced and immobilized with efficiency onto a gold substrate through an optimized surface functionalization method.

JTD Keywords: Bioelectronic noses, Biosensors, Nanoproteoliposomes, Nanosomes, Olfactory receptors, SAMs


Fumagalli, L., Ferrari, G., Sampietro, M., Gomila, G., (2009). Quantitative nanoscale dielectric microscopy of single-layer supported biomembranes Nano Letters 9, (4), 1604-1608

We present the experimental demonstration of low-frequency dielectric constant imaging of single-layer supported biomembranes at the nanoscale. The dielectric constant image has been quantitatively reconstructed by combining the thickness and local capacitance obtained using a scanning force microscope equipped with a sub-attofarad low-frequency capacitance detector. This work opens new possibilities for studying bioelectric phenomena and the dielectric properties of biological membranes at the nanoscale.

JTD Keywords: Atomic-force microscopy, Nnear-field microscopy, Purple membrane, Scanning capacitance, Biological-systems, Fluid, Spectroscopy, Resolution, Proteins, Dynamics


Gramse, G., Casuso, I., Toset, J., Fumagalli, L., Gomila, G., (2009). Quantitative dielectric constant measurement of thin films by DC electrostatic force microscopy Nanotechnology 20, (39), 395702

A simple method to measure the static dielectric constant of thin films with nanometric spatial resolution is presented. The dielectric constant is extracted from DC electrostatic force measurements with the use of an accurate analytical model. The method is validated here on thin silicon dioxide films (8 nm thick, dielectric constant approximately 4) and purple membrane monolayers (6 nm thick, dielectric constant approximately 2), providing results in excellent agreement with those recently obtained by nanoscale capacitance microscopy using a current-sensing approach. The main advantage of the force detection approach resides in its simplicity and direct application on any commercial atomic force microscope with no need of additional sophisticated electronics, thus being easily available to researchers in materials science, biophysics and semiconductor technology.

JTD Keywords: Roscopy, Membrane, Tip, Polarizability, Polarization, Resolution, Nanotubes, Charge


Rodriguez-Trujillo, R., Castillo-Fernandez, O., Garrido, M., Arundell, M., Valencia, A., Gomila, G., (2008). High-speed particle detection in a micro-Coulter counter with two-dimensional adjustable aperture Biosensors and Bioelectronics 24, (2), 290-296

This article presents the fabrication and characterisation of a high-speed detection micro-Coulter counter with two-dimensional (2D) adjustable aperture and differential impedance detection. The developed device has been fabricated from biocompatible and transparent materials (polymer and glass) and uses the principle of hydrodynamic focusing in two dimensions. The use of a conductive solution for the sample flux and non-conductive solutions for the focalising fluxes provides an adjustable sample flow where particles are aligned and the resistive response concentrated, consequently enhancing the sensitivity and versatility of the device. High-speed counting of 20 mu m polystyrene particles and 5 mu m yeast cells with a rate of up to 1000 particles/s has been demonstrated. Two-dimensional focusing conditions have been used in devices with physical cross-sectional areas of 180 mu m x 65 mu m and 100 mu m x 43 mu m, respectively, in which particles resulted undetectable in the absence of focusing. The 2D-focusing conditions have provided, in addition, increased detection sensitivity by a factor of 1.6 as compared to 1 D-focusing conditions.

JTD Keywords: Impedance, Chip, Microfluidics


Gomila, G., Toset, J., Fumagalli, L., (2008). Nanoscale capacitance microscopy of thin dielectric films Journal of Applied Physics 104, (2), 8

We present an analytical model to interpret nanoscale capacitance microscopy measurements on thin dielectric films. The model displays a logarithmic dependence on the tip-sample distance and on the film thickness-dielectric constant ratio and shows an excellent agreement with finite-element numerical simulations and experimental results on a broad range of values. Based on these results, we discuss the capabilities of nanoscale capacitance microscopy for the quantitative extraction of the dielectric constant and the thickness of thin dielectric films at the nanoscale.

JTD Keywords: AFM, Thickness, Tip


Rodriguez-Trujillo, R., Castillo-Fernandez, O., Arundell, M., Samitier, J., Gomila, G., (2008). Yeast cells detection in a very fast and highly versatile microfabricated cytometer MicroTAS 2008 12th International Conference on Miniaturized Systems for Chemistry and Life Sciences , Chemical and Biological Microsystems Society (San Diego, USA) , 1888-1890

A novel microfluidic chip able to detect a wide range of different cell sizes at very high rates is reported. The device uses two-dimensional hydrodynamic focusing [1] of the sample (conducting) flow by three non-conducting flows and high-speed differential impedance detection electronics. High-speed counting of 15μm polystyrene particles and 5μm yeast cells with a rate of up to 1000 particles/s has been demonstrated. Using of two-dimensional focusing effect turn out to be essential in a device with very large cross-sectional area (100x43 μm2) in which particles result undetectable in the absence of focusing.

JTD Keywords: Coulter-counter, Impedance, Microfluidics, Polydimethylsiloxane


Casuso, I., Pla, M., Gomila, G., Samitier, J., Minic, J., Persuy, M. A., Salesse, R., Pajot-Augy, E., (2008). Immobilization of olfactory receptors onto gold electrodes for electrical biosensor Materials Science & Engineering C 5th Maghreb-Europe Meeting on Materials and their Applicatons for Devices and Physical, Chemical and Biological Sensors , Elsevier Science (Mahdia, TUNISIA) 28, (5-6), 686-691

We investigate the immobilization of native nanovesicles containing functional olfactory receptors onto gold electrodes by means of atomic force microscopy in liquid. We show that nanovesicles can be adsorbed without disrupting them presenting sizes once immobilized ranging from 50 run to 200 nm in diameter. The size of the nanovesicles shows no dependence on the electrode hydrophobicity being constant in a height/width ratio close to 1:3. Nevertheless, electrode hydrophobicity does affect the surface coverage, the surface coverage is five times higher in hydrophilic electrodes than on hydrophobic ones. Surface coverage is also affected by nanovesicles dimensions in suspension, the size homogenization to around 50 nm yields a further five fold increment in surface coverage achieving a coverage of about 50% close to the hard spheres jamming limit (54.7%). A single layer of nanovesicles is always formed with no particle overlap. Present results provide insights into the immobilization on electrodes of olfactory receptors for further olfactory electrical biosensor development.

JTD Keywords: AFM, Adsorption, Odorant, Taste