DONATE

Bacterial infections: antimicrobial therapies

About

The Bacterial infections: antimicrobial therapies group is a junior group under IBEC’s Tenure Track scheme.

Infectious diseases constitute a tenacious and major public health problem all over the world. The emergence and increasing prevalence of bacterial strains that are resistant to available antibiotics demand the discovery of new therapeutic approaches.

Biofilms are bacterial communities that grow embedded within a protective matrix produced by themselves.

Also, chronic infections caused by bacteria growing in biofilms, are enormously complicated to treat. It increases their fitness and survival, thus complicating treatment and diagnosis because they persist despite the action of antibiotic therapies and adaptive immune responses.

Over 60% of all human infections are characterized by the formation of a biofilm, which is involved in a wide variety of pathological conditions by either growing over human tissues (Cystic Fibrosis, Chronic Obstructive Pulmonary Disease, chronic wound, etc.) or by developing on the surfaces of medical devices (e.g. endotracheal tubes, intravenous and urinary catheters, etc.).

Our lab aims to investigate new antimicrobial therapies and strategies to combat bacterial infections with different objectives:

  • The use of nanomedicine techniques for the development of novel and specific nanoparticles to deliver existing antibiotics or new identify antimicrobial drugs, significantly when the bacteria are growing in biofilm, close to the physiological conditions of the disease and where the current chemotherapy fails;
  • The identification and screening of new molecules for the highly selective inhibition of new antibacterial targets (e.g. ribonucleotide reductases);
  • The use of nanomedicine techniques for the development of novel and specific nanoparticles to deliver existing antibiotics or new identify antimicrobial drugs, significantly when the bacteria are growing in biofilm, close to the physiological conditions of the disease and where the current chemotherapy fails;
  • To study new methodologies to treat chronic bacterial infections in patients suffering cystic fibrosis;
  • To develop a new family of antibacterial vaccines;
  • The development of new strategies for bacterial coculture systems;
  • To study and develop models for wound healing infections and the search of novel treatments;
  • The use of lab-on-a-chip technology to deeply elucidate mechanisms to combat bacterial forming biofilm as well as new approaches to identify multiresistant bacteria to different antibiotics.
  • To establish the molecular basis for the regulation of genes involved in DNA synthesis (ribonucleotide reductase genes), their importance in virulence and biofilm formation;

We believe these projects will be beneficial to society since we explore the use of different bioengineering approaches to elucidate ways to diagnose and eradicate multi-drug resistant bacteria.

Related links:

https://sites.google.com/view/torrentslabwebpage

Staff

Eduard Torrents Serra

Group Leader
+34 934 034 756
etorrentsibecbarcelona.eu

Former Members
Maria del Mar Cendra | PhD Student

Projects

NATIONAL PROJECTSFINANCERPI
InfectTreat · Understanding DNA metabolism and new insights in polymicrobial biofilms: development of more efficient therapies to tackle bacterial infections (2022 – 2025)MICIU. Generación Conocimiento proyectos I+DEduard Torrents
DISnanoAMR · Desarrollo de nuevas estrategias para hacer frente a la resistencia antibiótica (2022 – 2025)MICIU. Poryectos de I+D+i en líneas estratégicasEduard Torrents
IVD-Biofilm · Desarrollo de un nuevo dispositivo para el diagnóstico personalizado en infecciones relacionadas con biopelículas (2022 – 2024)MICIU. Proyectos Pruebas de ConceptoEduard Torrents
Acuerdo de colaboración ente el IBEC y la Asociación Catalana de Fibrosis Quística (2019 – 2024)Asociación Catalana de Fibrosis QuísticaEduard Torrents
Las biopelículas polimicrobianas para el desarrollo de terapias más eficientes contra las infecciones bacterianas” (2021-2022)Diputació de BarcelonaEduard Torrents
combatRNR · Comprender la síntesis del ADN en patógenos bacterianos: nuevas estrategias para el tratamiento de enfermedades infecciosas (2019 – 2022)MICIU. Retos investigación: Proyectos I+DEduard Torrents
BIOVAC · Artificial bacteria: a novel generation of bioinspired vaccines (2020 – 2023)BIST. BIST Ignite ProgramEduard Torrents
Las biopelículas polimicrobianas para el desarrollo de terapias más eficientes contra las infecciones bacterianas” (2021-2022)Diputació de BarcelonaEduard Torrents

FINISHED PROJECTSFINANCERPI
Terapias alternativas para el tratamiento de las infecciones bacterianas crónicas en pacientes con fibrosis quística a (2019-2021)Asociación Catalana de Fibrosis QuísticaEduard Torrents
Noves estratègies antimicrobianes per combatre la fibrosi quística (2016-2020) Obra Social La CaixaEduard Torrents
BiofilmChip  CaixaImpulse BiofilmChip (2018 – 2020)Obra Social La CaixaEduard Torrents
Desarrollo de una nueva familia de compuestos antimicrobianosAsociación Catalana de Fibrosis QuísticaEduard Torrents
Identificación y administración de nuevas moléculas antimicrobianas contra Pseudomonas aeruginosa creciendo en biofilmAsociación Española Fibrosis Quística, Becas de Investigación “Pablo Motos”Eduard Torrents
Novel strategies to combat bacterial chronic infections by the development of microfluidics platforms to analyse and treat bacterial growing in biofilms (2016)Obra Social La CaixaEduard Torrents
Redes reguladoras de la expresión génica de las distintas ribonucleotidil reductasas en bacteriasMINECO, I+D-Investigación fundamental no orientadaEduard Torrents
BACTSHOT Novel antimicrobial therapy (2016-2017)EIT Health Head Start – Proof of ConceptEduard Torrents
inhibitRNR Las ribonucleotido reductasas como una nueva diana terapéutica frente a patógenos bacterianos (2016-2018)MINECO, Retos investigación: Proyectos I+DEduard Torrents
Ribonucleotide reductasas: una nueva diana terapéutica contra organismos patógenos en enfermos de fibrosis quística (2010-2017)Asociación Española Fibrosis Quística, Becas de Investigación “Pablo Motos”Eduard Torrents
RNRbiotic New strategy to combat bacterial infections (2015-2017)Obra Social La Caixa, CaixaimpulseEduard Torrents

Publications

(See full publication list in ORCID)


[br]

Equipment

  • Zeiss LSM 800 Confocal Laser Scanning Microscope
  • Nikon Inverted Fluorescent microscope ECLIPSE Ti-S/L100
  • Cell culture facilities for microbial infections
  • Characterization of nanoparticles/biomaterial antibacterial activity
  • Drosophila melanogaster and Galleria mellonella as a model host for bacterial infections
  • Continuous flow system model for bacterial biofilm development
  • Single Channel Fiber-Optic Oxygen Meter with microsensor
  • Molecular biology, biochemistry and protein purification facilities
  • Bacterial expression systems for heterologous protein production

Collaborations

  • Prof. Fernando Albericio
    Institut de Recerca Biomèdica (IRB), Barcelona, Spain
  • Dr. Elisabeth Engel
    IBEC
  • Dr. Esther Julián
    Dept. de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Spain
  • Dr. Joan Gavaldà
    Infectious diseases, Vall d’Hebrón Hospital and Research Institute, Barcelona, Spain
  • Prof. Víctor Puntes
    Inorganic nanoparticles group, Institut Català de Nanociència i Nanotecnología, Barcelona, Spain
  • Prof. Josep Samitier
    IBEC
  • Prof. Santiago Vazquez
    Laboratori de química farmacèutica, Pharmacy Faculty, Barcelona University
  • Prof. Gabriel Gomila
    IBEC
  • Prof. Vladimir Arion
    Department of Inorganic Chemistry, University of Vienna, Austria
  • Dr. Maria Teresa Martin-Gomez
    Division of Respiratory Bacteriology and Clinical Mycology. Microbiology Department. Vall d’Hebrón Hospital, Spain 

News

Researchers at Institute for Bioengineering of Catalonia (IBEC) have managed to recreate the coculture conditions and environmental requisites that would allow the simultaneous and stable growth of Pseudomonas aeruginosa and Staphylococcus aureus, two major pathogens commonly found growing together in intricate biofilms in disease-affected lungs or wounds. Most chronic infections occur due to the inherent capacity of some bacterial pathogens to grow in biofilms. Biofilm-associated infections, which have become a critical worldwide threat, have historically been treated as single-species events.

Researchers at IBEC provide new insights on how to treat chronic infections

Researchers at Institute for Bioengineering of Catalonia (IBEC) have managed to recreate the coculture conditions and environmental requisites that would allow the simultaneous and stable growth of Pseudomonas aeruginosa and Staphylococcus aureus, two major pathogens commonly found growing together in intricate biofilms in disease-affected lungs or wounds. Most chronic infections occur due to the inherent capacity of some bacterial pathogens to grow in biofilms. Biofilm-associated infections, which have become a critical worldwide threat, have historically been treated as single-species events.

The Bacterial Infections: Antimicrobial Therapies group at IBEC, led by Eduard Torrents, has developed a system capable of investigating how pathogens adapt to oxygen changes. Using this technique, they have discovered that bacteria E. coli and Pseudomonas aeruginosa can adapt to environmental changes through different mechanisms, which opens the door to better knowledge and treatment of infections.

Researchers at IBEC track how pathogens adapt to oxygen changes

The Bacterial Infections: Antimicrobial Therapies group at IBEC, led by Eduard Torrents, has developed a system capable of investigating how pathogens adapt to oxygen changes. Using this technique, they have discovered that bacteria E. coli and Pseudomonas aeruginosa can adapt to environmental changes through different mechanisms, which opens the door to better knowledge and treatment of infections.

BioVac, a project led jointly by the Institute for Bioengineering of Catalonia (IBEC) and the Catalan Institute of Nanoscience and Nanotechnology (ICN2) has been awarded the BIST Ignite Awards 2020. The aim of this collaboration is to populate nanoparticles with antigens to create a new generation of vaccines against untreatable infections and multi-resistant bacteria. The award ceremony of the BIST Ignite Awards 2020 will be held on March 11 at the Auditorium of La Pedrera.

The BioVac project led by IBEC and ICN2 awarded at the BIST Ignite Awards 2020

BioVac, a project led jointly by the Institute for Bioengineering of Catalonia (IBEC) and the Catalan Institute of Nanoscience and Nanotechnology (ICN2) has been awarded the BIST Ignite Awards 2020. The aim of this collaboration is to populate nanoparticles with antigens to create a new generation of vaccines against untreatable infections and multi-resistant bacteria. The award ceremony of the BIST Ignite Awards 2020 will be held on March 11 at the Auditorium of La Pedrera.

Representatives of the board of directors of the Catalan Association of Cystic Fibrosis (ACFQ) recently visited IBEC laboratories to discuss the latest advances in bacterial resistance with Dr. Eduard Torrents, principal investigator at IBEC of the group of Bacterial infections: Antimicrobial therapies . Eduard Torrents, with the support of the ACFQ since 2009, is investigating different antimicrobial strategies to eradicate infections associated with this disease. As on previous occasions, he showed his laboratory to the representatives of the association and shared with them the latest advances in the different lines he is currently developing. “Working with the patient association made me change the way I was doing my research, I want to find solutions,” he said. On their behalf, the “Associació Catalana de Fibrosi Quística”, that since his foundation at 1988 backs the assistencial and researcher work, devotes a large part of its financial resources to achieve progress in treatment and research, providing different improvements to different research groups .

The directing board of the “Asociación Catalana de Fibrosis Quística” visits IBEC

Representatives of the board of directors of the Catalan Association of Cystic Fibrosis (ACFQ) recently visited IBEC laboratories to discuss the latest advances in bacterial resistance with Dr. Eduard Torrents, principal investigator at IBEC of the group of Bacterial infections: Antimicrobial therapies . Eduard Torrents, with the support of the ACFQ since 2009, is investigating different antimicrobial strategies to eradicate infections associated with this disease. As on previous occasions, he showed his laboratory to the representatives of the association and shared with them the latest advances in the different lines he is currently developing. “Working with the patient association made me change the way I was doing my research, I want to find solutions,” he said. On their behalf, the “Associació Catalana de Fibrosi Quística”, that since his foundation at 1988 backs the assistencial and researcher work, devotes a large part of its financial resources to achieve progress in treatment and research, providing different improvements to different research groups .

Researchers from the Institute for Bioengineering of Catalonia and the University of Granada have created two potent antimicrobials from oleanolic acid and maslinic acid, both of which are found in olive oil The study, published in the journal ACS Infectious Diseases, has demonstrated the effect of these derivatives on the bacteria Staphylococcus aureus, one of the main causes of infections in catheters and prostheses. Liquid gold. This is how all Mediterranean cultures have referred to olive oil throughout history. Its captivating flavour, its texture and its role in gastronomy have been some of the qualities that have contributed to this. But olive oil is also a great ally when it comes to health: from antiinflammatory properties to benefits for the cardiovascular system, and even recently discovered antitumor effects. Now, scientists from the Institute for Bioengineering of Catalonia (IBEC) and the University of Granada (UGR) have contributed new insights that increase the already well-known antimicrobial properties of olive oil. To do this, they have synthesised two derivatives with enormous antimicrobial potential from two compounds present in olive oil—oleanolic acid and maslinic acid.

Olive oil offers two powerful weapons in the fight against antibiotic resistance

Researchers from the Institute for Bioengineering of Catalonia and the University of Granada have created two potent antimicrobials from oleanolic acid and maslinic acid, both of which are found in olive oil The study, published in the journal ACS Infectious Diseases, has demonstrated the effect of these derivatives on the bacteria Staphylococcus aureus, one of the main causes of infections in catheters and prostheses. Liquid gold. This is how all Mediterranean cultures have referred to olive oil throughout history. Its captivating flavour, its texture and its role in gastronomy have been some of the qualities that have contributed to this. But olive oil is also a great ally when it comes to health: from antiinflammatory properties to benefits for the cardiovascular system, and even recently discovered antitumor effects. Now, scientists from the Institute for Bioengineering of Catalonia (IBEC) and the University of Granada (UGR) have contributed new insights that increase the already well-known antimicrobial properties of olive oil. To do this, they have synthesised two derivatives with enormous antimicrobial potential from two compounds present in olive oil—oleanolic acid and maslinic acid.

Four projects coordinated by 2 group leaders and 2 researchers from IBEC have been successful in gaining funding through the Barcelona Institute of Science and Technology’s IGNITE call.The BIST Ignite Programme is a mechanism to foster multidisciplinary research among the BIST members. Its goal is to promote new collaboration between its partners, facilitating the exchange of knowledge among different scientific fields and exploring new approaches. The projects that can be eligible for the grants must pursue the exploration of new questions and technological challenges through novel multidisciplinary approaches. The selected projects are granted with 20.000€ each and researchers will have 8 months to develop their projects.

IBEC is a partner in four out of five 2018 BIST Ignite Grants awarded to multidisciplinary research projects

Four projects coordinated by 2 group leaders and 2 researchers from IBEC have been successful in gaining funding through the Barcelona Institute of Science and Technology’s IGNITE call.The BIST Ignite Programme is a mechanism to foster multidisciplinary research among the BIST members. Its goal is to promote new collaboration between its partners, facilitating the exchange of knowledge among different scientific fields and exploring new approaches. The projects that can be eligible for the grants must pursue the exploration of new questions and technological challenges through novel multidisciplinary approaches. The selected projects are granted with 20.000€ each and researchers will have 8 months to develop their projects.

The Bacterial Infections: Antimicrobial Therapies group from IBEC, led by Eduard Torrents, has designed a new method that, for the first time, makes it possible to check antimicrobial treatment efficacy in the presence of nanoparticles.This new technique has recently been published in the Journal of Nanobiotechnology.. Antimicrobial resistance is one of the main threats facing global healthcare today. According to data from the WHO, there are an increasing number of infections (pneumonia, tuberculosis, gonorrhoea) that are more difficult to treat given that many antibiotics have lost their effectiveness. The root of this problem lies in the excessive use and misuse of antibiotics, which causes bacteria to become resistant to them. As a result, antibiotics are no longer effective.

A step forward in using nanoparticles to fight bacterial resistance

The Bacterial Infections: Antimicrobial Therapies group from IBEC, led by Eduard Torrents, has designed a new method that, for the first time, makes it possible to check antimicrobial treatment efficacy in the presence of nanoparticles.This new technique has recently been published in the Journal of Nanobiotechnology.. Antimicrobial resistance is one of the main threats facing global healthcare today. According to data from the WHO, there are an increasing number of infections (pneumonia, tuberculosis, gonorrhoea) that are more difficult to treat given that many antibiotics have lost their effectiveness. The root of this problem lies in the excessive use and misuse of antibiotics, which causes bacteria to become resistant to them. As a result, antibiotics are no longer effective.

IBEC’s Bacterial infections: antimicrobial therapies group have published two papers offering new hope in the urgent search for antimicrobials. “We desperately need antimicrobials,” says Eduard Torrents. “Antibiotic resistance is one of the greatest threats to human health today, and the time is fast approaching when routine procedures will be much more risky.” Not only have some common infections or illnesses become resistant to the antibiotics usually used to treat them, a really pressing medical problem now is the rapid rise of ‘superbugs’ or multidrug-resistant bacteria, which are immune to almost all of the antibiotics that are currently available.

Two promising avenues in the fight against antibiotic resistance

IBEC’s Bacterial infections: antimicrobial therapies group have published two papers offering new hope in the urgent search for antimicrobials. “We desperately need antimicrobials,” says Eduard Torrents. “Antibiotic resistance is one of the greatest threats to human health today, and the time is fast approaching when routine procedures will be much more risky.” Not only have some common infections or illnesses become resistant to the antibiotics usually used to treat them, a really pressing medical problem now is the rapid rise of ‘superbugs’ or multidrug-resistant bacteria, which are immune to almost all of the antibiotics that are currently available.

IBEC researchers were in the limelight today at the awards ceremony for the “la Caixa” fellowships and grants for research and innovation calls. Anna Labernadie and Irene Marco, postdocs in the Integrative Cell and Tissue Dynamics and Biosensors for bioengineering groups respectively, won fellowships under the first Junior Leader “la Caixa” call, which helps excellent researchers of any nationality who wish to continue their research career in Spanish or Portuguese territory. Anna was one of 10 postdocs to win a ‘Retaining’ grant for candidates who are already residing in the countries, and Irene was awarded one of 20 ‘Incoming’ positions for those coming from elsewhere.

Five IBEC researchers awarded “la Caixa” grants at ceremony

IBEC researchers were in the limelight today at the awards ceremony for the “la Caixa” fellowships and grants for research and innovation calls. Anna Labernadie and Irene Marco, postdocs in the Integrative Cell and Tissue Dynamics and Biosensors for bioengineering groups respectively, won fellowships under the first Junior Leader “la Caixa” call, which helps excellent researchers of any nationality who wish to continue their research career in Spanish or Portuguese territory. Anna was one of 10 postdocs to win a ‘Retaining’ grant for candidates who are already residing in the countries, and Irene was awarded one of 20 ‘Incoming’ positions for those coming from elsewhere.

Jobs