by Keyword: Amyloid polypeptide
Rodríguez-Comas, J, Ramón-Azcón, J, (2022). Islet-on-a-chip for the study of pancreatic β-cell function In Vitro Models 1, 41-57
Diabetes mellitus is a significant public health problem worldwide. It encompasses a group of chronic disorders characterized by hyperglycemia, resulting from pancreatic islet dysfunction or as a consequence of insulin-producing beta-cell death. Organ-on-a-chip platforms have emerged as technological systems combining cell biology, engineering, and biomaterial technological advances with microfluidics to recapitulate a specific organ's physiological or pathophysiological environment. These devices offer a novel model for the screening of pharmaceutical agents and to study a particular disease. In the field of diabetes, a variety of microfluidic devices have been introduced to recreate native islet microenvironments and to understand pancreatic beta-cell kinetics in vitro. This kind of platforms has been shown fundamental for the study of the islet function and to assess the quality of these islets for subsequent in vivo transplantation. However, islet physiological systems are still limited compared to other organs and tissues, evidencing the difficulty to study this organ and the need for further technological advances. In this review, we summarize the current state of islet-on-a-chip platforms that have been developed so far. We recapitulate the most relevant studies involving pancreatic islets and microfluidics, focusing on the molecular and cellular-scale activities that underlie pancreatic beta-cell function.
JTD Keywords: pancreatic islets, Amyloid polypeptide, Diabetes, Glucose-tolerance, Hormone-secretion, Inflammation, Insulin-secretion, Islet-on-chip, Living cells, Mechanisms, Microchips, Microfluidic device, Microfluidics, Organ-on-chip, Pancreatic islets, Stress, Vascularization
Sabaté, R., Espargaró, A., de Groot, N. S., Valle-Delgado, J. J., Fernàndez-Busquets, X., Ventura, S., (2010). The role of protein sequence and amino acid composition in amyloid formation: Scrambling and backward reading of IAPP amyloid fibrils
Journal of Molecular Biology , 404, (2), 337-352
The specific functional structure of natural proteins is determined by the way in which amino acids are sequentially connected in the polypeptide. The tight sequence/structure relationship governing protein folding does not seem to apply to amyloid fibril formation because many proteins without any sequence relationship have been shown to assemble into very similar β-sheet-enriched structures. Here, we have characterized the aggregation kinetics, seeding ability, morphology, conformation, stability, and toxicity of amyloid fibrils formed by a 20-residue domain of the islet amyloid polypeptide (IAPP), as well as of a backward and scrambled version of this peptide. The three IAPP peptides readily aggregate into ordered, β-sheet-enriched, amyloid-like fibrils. However, the mechanism of formation and the structural and functional properties of aggregates formed from these three peptides are different in such a way that they do not cross-seed each other despite sharing a common amino acid composition. The results confirm that, as for globular proteins, highly specific polypeptide sequential traits govern the assembly pathway, final fine structure, and cytotoxic properties of amyloid conformations.
JTD Keywords: Amyloid formation, Islet amyloid polypeptide, Protein aggregation, Protein sequence, Retro proteins