DONATE

Publications

by Keyword: pancreatic islets

Fernández-Costa, JM, Ortega, MA, Rodríguez-Comas, J, Lopez-Muñoz, G, Yeste, J, Mangas-Florencio, L, Fernández-González, M, Martin-Lasierra, E, Tejedera-Villafranca, A, Ramon-Azcon, J, (2023). Training-on-a-Chip: A MultiOrgan Device to Study the Effect of Muscle Exercise on Insulin Secretion in Vitro Advanced Materials Technologies 8, 2200873

Rodríguez-Comas, Júlia, Ramón-Azcón, Javier, (2022). Islet-on-a-chip for the study of pancreatic beta-cell function In Vitro Models 1, 41-57

Diabetes mellitus is a significant public health problem worldwide. It encompasses a group of chronic disorders characterized by hyperglycemia, resulting from pancreatic islet dysfunction or as a consequence of insulin-producing ?-cell death. Organ-on-a-chip platforms have emerged as technological systems combining cell biology, engineering, and biomaterial technological advances with microfluidics to recapitulate a specific organ’s physiological or pathophysiological environment. These devices offer a novel model for the screening of pharmaceutical agents and to study a particular disease. In the field of diabetes, a variety of microfluidic devices have been introduced to recreate native islet microenvironments and to understand pancreatic ?-cell kinetics in vitro. This kind of platforms has been shown fundamental for the study of the islet function and to assess the quality of these islets for subsequent in vivo transplantation. However, islet physiological systems are still limited compared to other organs and tissues, evidencing the difficulty to study this “organ” and the need for further technological advances. In this review, we summarize the current state of islet-on-a-chip platforms that have been developed so far. We recapitulate the most relevant studies involving pancreatic islets and microfluidics, focusing on the molecular and cellular-scale activities that underlie pancreatic ?-cell function.

JTD Keywords: pancreatic islets, Diabetes, Microchips, Microfluidics


Velasco-Mallorqui, F, Rodriguez-Comas, J, Ramon-Azcon, J, (2021). Cellulose-based scaffolds enhance pseudoislets formation and functionality Biofabrication 13, 35044

In vitro research for the study of type 2 diabetes (T2D) is frequently limited by the availability of a functional model for islets of Langerhans. To overcome the limitations of obtaining pancreatic islets from different sources, such as animal models or human donors, immortalized cell lines as the insulin-producing INS1E beta-cells have appeared as a valid alternative to model insulin-related diseases. However, immortalized cell lines are mainly used in flat surfaces or monolayer distributions, not resembling the spheroid-like architecture of the pancreatic islets. To generate islet-like structures, the use of scaffolds appeared as a valid tool to promote cell aggregations. Traditionally-used hydrogel encapsulation methods do not accomplish all the requisites for pancreatic tissue engineering, as its poor nutrient and oxygen diffusion induces cell death. Here, we use cryogelation technology to develop a more resemblance scaffold with the mechanical and physical properties needed to engineer pancreatic tissue. This study shows that carboxymethyl cellulose (CMC) cryogels prompted cells to generate beta-cell clusters in comparison to gelatin-based scaffolds, that did not induce this cell organization. Moreover, the high porosity achieved with CMC cryogels allowed us to create specific range pseudoislets. Pseudoislets formed within CMC-scaffolds showed cell viability for up to 7 d and a better response to glucose over conventional monolayer cultures. Overall, our results demonstrate that CMC-scaffolds can be used to control the organization and function of insulin-producing beta-cells, representing a suitable technique to generate beta-cell clusters to study pancreatic islet function.

JTD Keywords: biomaterial, cryogel, pancreatic islets, scaffold, tissue engineering, ?-cell, Architecture, Beta-cell, Beta-cell heterogeneity, Biomaterial, Carboxymethyl cellulose, Cell culture, Cell death, Cell engineering, Cell organization, Cells, Cellulose, Cryogel, Cryogels, Cytoarchitecture, Delivery, Encapsulation methods, Gelation, Gene-expression, Immortalized cells, Insulin, Insulin secretory responses, Islets of langerhans, Mechanical and physical properties, Monolayer culture, Monolayers, Pancreatic islets, Pancreatic tissue, Pancreatic-islets, Proliferation, Scaffold, Scaffolds, Scaffolds (biology), Size, Tissue, Tissue engineering, Β-cell