DONATE

Publications

by Keyword: Antimicrobial resistance

Hüttener, M, Hergueta, J, Bernabeu, M, Prieto, A, Aznar, S, Merino, S, Tomás, J, Juárez, A, (2022). Roles of Proteins Containing Immunoglobulin-Like Domains in the Conjugation of Bacterial Plasmids Msphere 7, e00978-21

Transmission of a plasmid from one bacterial cell to another, in several instances, underlies the dissemination of antimicrobial resistance (AMR) genes. The process requires well-characterized enzymatic machinery that facilitates cell-to-cell contact and the transfer of the plasmid.

JTD Keywords: antimicrobial resistance, bacterial ig-like proteins, bacterial lg-like proteins, chromosomal genes, identification, inca/c, mutational analysis, plasmid conjugation, products, r-factors, resistance plasmids, salmonella-enterica, sequence, Antimicrobial resistance, Bacterial ig-like proteins, Escherichia-coli, Plasmid conjugation


Tassinari, E., Aznar, S., Urcola, I., Prieto, A., Hüttener, M., Juárez, A., (2016). The incC sequence is required for R27 plasmid stability Frontiers in Microbiology 7, (6), Article 629

IncHI plasmids account for multiple antimicrobial resistance in Salmonella and other enterobacterial genera. These plasmids are generally very stable in their bacterial hosts. R27 is the archetype of IncHI1 plasmids. A high percentage of the R27-encoded open reading frames (ORFs) (66.7%) do not show similarity to any known ORFs. We performed a deletion analysis of all non-essential R27 DNA sequences to search for hitherto non-identified plasmid functions that might be required for plasmid stability. We report the identification of a short DNA sequence (incC) that is essential for R27 stability. That region contains several repeats (incC repeats), belongs to one of the three-plasmid replicons (R27 FIA-like) and is targeted by the R27 E protein. Deletion of the incC sequence drastically reduces R27 stability both in Escherichia coli and in Salmonella, the effect being more pronounced in this latter species. Interfering with incC-E protein interaction must lead to a reduced IncHI1 plasmid stability, and may represent a new approach to combat antimicrobial resistance.

JTD Keywords: Antimicrobial resistance, E protein, IncC, IncHI1 plasmids, Plasmid R27, Plasmid stability