DONATE

Publications

by Keyword: sequence

Fischer, NG, Aparicio, C, (2022). Junctional epithelium and hemidesmosomes: Tape and rivets for solving the “percutaneous device dilemma” in dental and other permanent implants Bioactive Materials 18, 178-198

The percutaneous device dilemma describes etiological factors, centered around the disrupted epithelial tissue surrounding non-remodelable devices, that contribute to rampant percutaneous device infection. Natural percutaneous organs, in particular their extracellular matrix mediating the “device”/epithelium interface, serve as exquisite examples to inspire longer lasting long-term percutaneous device design. For example, the tooth's imperviousness to infection is mediated by the epithelium directly surrounding it, the junctional epithelium (JE). The hallmark feature of JE is formation of hemidesmosomes, cell/matrix adhesive structures that attach surrounding oral gingiva to the tooth's enamel through a basement membrane. Here, the authors survey the multifaceted functions of the JE, emphasizing the role of the matrix, with a particular focus on hemidesmosomes and their five main components. The authors highlight the known (and unknown) effects dental implant – as a model percutaneous device – placement has on JE regeneration and synthesize this information for application to other percutaneous devices. The authors conclude with a summary of bioengineering strategies aimed at solving the percutaneous device dilemma and invigorating greater collaboration between clinicians, bioengineers, and matrix biologists. © 2022 The Authors

JTD Keywords: amino-acid-sequence, bioinspired surfaces, cell-secreted protein, growth-factor receptor, hemidesmosome, integrin beta-4 subunit, junctional epithelium, keratinocyte-derived chemokine, laminin-binding integrins, marginal bone loss, percutaneous device, percutaneous implant, pressure wound therapy, soft-tissue integration, Bioinspired surfaces, Bullous-pemphigoid antigen, Hemidesmosome, Junctional epithelium, Percutaneous device, Percutaneous implant


Hüttener, M, Hergueta, J, Bernabeu, M, Prieto, A, Aznar, S, Merino, S, Tomás, J, Juárez, A, (2022). Roles of Proteins Containing Immunoglobulin-Like Domains in the Conjugation of Bacterial Plasmids Msphere 7, e00978-21

Transmission of a plasmid from one bacterial cell to another, in several instances, underlies the dissemination of antimicrobial resistance (AMR) genes. The process requires well-characterized enzymatic machinery that facilitates cell-to-cell contact and the transfer of the plasmid.

JTD Keywords: antimicrobial resistance, bacterial ig-like proteins, bacterial lg-like proteins, chromosomal genes, identification, inca/c, mutational analysis, plasmid conjugation, products, r-factors, resistance plasmids, salmonella-enterica, sequence, Antimicrobial resistance, Bacterial ig-like proteins, Escherichia-coli, Plasmid conjugation


Romero, D, Jane, R, (2021). Relationship between Sleep Stages and HRV response in Obstructive Sleep Apnea Patients Conference Proceedings : ... Annual International Conference Of The Ieee Engineering In Medicine And Biology Society. Ieee Engineering In Medicine And Biology Society. Conference 2021, 5535-5538

Patients suffering from obstructive sleep apnea (OSA) usually present an increased sympathetic activity caused by the intermittent hypoxia effect on autonomic control. This study evaluated the relationship between sleep stages and the apnea duration, frequency, and type, as well as their impact on HRV markers in different groups of disease severity. The hypnogram and R-R interval signals were extracted in 81 OSA patients from night polysomnographic (PSG) recordings. The apnea-hypopnea index (AHI) defined patient classification as mild-moderate (AHI< 30, n 44) or severe (AHI>30, n 37). The normalized power in VLH, LF, and HF bands of RR series were estimated by a time-frequency approach and averaged in 1-min epochs of normal and apnea segments. The autonomic response and the impact of sleep stages were assessed in both segments to compare patient groups. Deeper sleep stages (particularly S2) concentrated the shorter and mild apnea episodes (from 10 to 40 s) compared to light (SWS) and REM sleep. Longer episodes (>50 s) although less frequent, were of similar incidence in all stages. This pattern was more pronounced for the group of severe patients. Moreover, during apnea segments, LF nu was higher (p 0.044) for the severe group, since V LF nu and HF nu presented the greatest changes when compared to normal segments. The non-REM sleep seems to better differentiate OSA patients groups, particularly through VLF nu and HF nu (p<0.001). A significant difference in both sympathetic and vagal modulation between REM and non-REM sleep was only found within the severe group. These results confirm the importance of considering sleep stages for HRV analysis to further assess OSA disease severity, beyond the traditional and clinically limited AHI values.Clinical relevance - Accounting for sleep stages during HRV analysis could better assess disease severity in OSA patients. © 2021 IEEE.

JTD Keywords: blood-pressure, genomic consequences, intermittent hypoxia, rapid-eye-movement, sympathetic activity, Heart rate, Heart-rate-variability, Human, Humans, Polysomnography, Rem sleep, Sleep apnea, obstructive, Sleep disordered breathing, Sleep stage, Sleep stages, Sleep, rem


Sheehan, F, Sementa, D, Jain, A, Kumar, M, Tayarani-Najjaran, M, Kroiss, D, Ulijn, RV, (2021). Peptide-Based Supramolecular Systems Chemistry Chemical Reviews 121, 13869-13914

Peptide-based supramolecular systems chemistry seeks to mimic the ability of life forms to use conserved sets of building blocks and chemical reactions to achieve a bewildering array of functions. Building on the design principles for short peptide-based nanomaterials with properties, such as self-assembly, recognition, catalysis, and actuation, are increasingly available. Peptide-based supramolecular systems chemistry is starting to address the far greater challenge of systems-level design to access complex functions that emerge when multiple reactions and interactions are coordinated and integrated. We discuss key features relevant to systems-level design, including regulating supramolecular order and disorder, development of active and adaptive systems by considering kinetic and thermodynamic design aspects and combinatorial dynamic covalent and noncovalent interactions. Finally, we discuss how structural and dynamic design concepts, including preorganization and induced fit, are critical to the ability to develop adaptive materials with adaptive and tunable photonic, electronic, and catalytic properties. Finally, we highlight examples where multiple features are combined, resulting in chemical systems and materials that display adaptive properties that cannot be achieved without this level of integration.

JTD Keywords: aromatic peptide, biological-properties, chemical control, conformational-analysis, electronic transport, mechanical-properties, perylene bisimide, pro-hyp sequences, residues determine, Self-assembling peptide


Watt, AC, Cejas, P, DeCristo, MJ, Metzger, O, Lam, EYN, Qiu, XT, BrinJones, H, Kesten, N, Coulson, R, Font-Tello, A, Lim, K, Vadhi, R, Daniels, VW, Montero, J, Taing, L, Meyer, CA, Gilan, O, Bell, CC, Korthauer, KD, Giambartolomei, C, Pasaniuc, B, Seo, JH, Freedman, ML, Ma, CT, Ellis, MJ, Krop, I, Winer, E, Letai, A, Brown, M, Dawson, MA, Long, HW, Zhao, JJ, Goel, S, (2021). CDK4/6 inhibition reprograms the breast cancer enhancer landscape by stimulating AP-1 transcriptional activity Nature Cancer 2, 34-+

Goel and colleagues show that CDK4/6 inhibition induces global chromatin changes mediated by AP-1 factors, which mediate key biological and clinical effects in breast cancer. Pharmacologic inhibitors of cyclin-dependent kinases 4 and 6 (CDK4/6) were designed to induce cancer cell cycle arrest. Recent studies have suggested that these agents also exert other effects, influencing cancer cell immunogenicity, apoptotic responses and differentiation. Using cell-based and mouse models of breast cancer together with clinical specimens, we show that CDK4/6 inhibitors induce remodeling of cancer cell chromatin characterized by widespread enhancer activation, and that this explains many of these effects. The newly activated enhancers include classical super-enhancers that drive luminal differentiation and apoptotic evasion, as well as a set of enhancers overlying endogenous retroviral elements that are enriched for proximity to interferon-driven genes. Mechanistically, CDK4/6 inhibition increases the level of several activator protein-1 transcription factor proteins, which are in turn implicated in the activity of many of the new enhancers. Our findings offer insights into CDK4/6 pathway biology and should inform the future development of CDK4/6 inhibitors.

JTD Keywords: Abemaciclib, Androgen receptor, Animal experiment, Animal model, Animal tissue, Apoptosis, Article, Breast cancer, C-jun, Cancer cell, Carcinoembryonic antigen related cell adhesion molecule 1, Caspase 3, Cell cycle arrest, Cells, Chromatin, Chromatin immunoprecipitation, Controlled study, Cyclin dependent kinase 4, Cyclin dependent kinase 6, Dna damage, Epidermal growth factor receptor 2, Estrogen receptor, Female, Flow cytometry, Fulvestrant, Hla drb1 antigen, Human, Human cell, Immunoblotting, Immunogenicity, Immunoprecipitation, Interferon, Luciferase assay, Mcf-7 cell line, Mda-mb-231 cell line, Microarray analysis, Morphogenesis, Mouse, Nonhuman, Palbociclib, Protein, Protein expression, Rb, Resistance, Rna polymerase ii, Rna sequence, Selective-inhibition, Senescence, Short tandem repeat, Signal transduction, Tamoxifen, Transcription elongation, Transcription factor, Transcription factor ap 1, Transcriptome, Tumor biopsy, Tumor differentiation, Tumor spheroid, Tumor xenograft, Vinculin, Whole exome sequencing


Freire IT, Amil AF, Vouloutsi V, Verschure PFMJ, (2021). Towards sample-efficient policy learning with DAC-ML Procedia Computer Science 190, 256-262

The sample-inefficiency problem in Artificial Intelligence refers to the inability of current Deep Reinforcement Learning models to optimize action policies within a small number of episodes. Recent studies have tried to overcome this limitation by adding memory systems and architectural biases to improve learning speed, such as in Episodic Reinforcement Learning. However, despite achieving incremental improvements, their performance is still not comparable to how humans learn behavioral policies. In this paper, we capitalize on the design principles of the Distributed Adaptive Control (DAC) theory of mind and brain to build a novel cognitive architecture (DAC-ML) that, by incorporating a hippocampus-inspired sequential memory system, can rapidly converge to effective action policies that maximize reward acquisition in a challenging foraging task.

JTD Keywords: Cognitive architecture, Distributed adaptive control, Reinforcement learning, Sample-inefficiency problem, Sequence learning


Pallarès, Irantzu, de Groot, Natalia S., Iglesias, Valentín, Sant'Anna, Ricardo, Biosca, Arnau, Fernàndez-Busquets, Xavier, Ventura, Salvador, (2018). Discovering putative prion-like proteins in Plasmodium falciparum: A computational and experimental analysis Frontiers in Microbiology 9, Article 1737

Prions are a singular subset of proteins able to switch between a soluble conformation and a self-perpetuating amyloid state. Traditionally associated with neurodegenerative diseases, increasing evidence indicates that organisms exploit prion-like mechanisms for beneficial purposes. The ability to transit between conformations is encoded in the so-called prion domains, long disordered regions usually enriched in glutamine/asparagines residues. Interestingly, Plasmodium falciparum, the parasite that causes the most virulent form of malaria, is exceptionally rich in proteins bearing long Q/N-rich sequence stretches, accounting for roughly 30% of the proteome. This biased composition suggests that these protein regions might correspond to prion-like domains (PrLDs) and potentially form amyloid assemblies. To investigate this possibility, we performed a stringent computational survey for Q/N-rich PrLDs on P. falciparum. Our data indicate that ~10% of P. falciparum protein sequences have prionic signatures, and that this subproteome is enriched in regulatory proteins, such as transcription factors and RNA-binding proteins. Furthermore, we experimentally demonstrate for several of the identified PrLDs that, despite their disordered nature, they contain inner short sequences able to spontaneously self-assemble into amyloid-like structures. Although the ability of these sequences to nucleate the conformational conversion of the respective full-length proteins should still be demonstrated, our analysis suggests that, as previously described for other organisms, prion-like proteins might also play a functional role in P. falciparum.

JTD Keywords: Plasmodium, Protein aggregation, Amyloid, Prion, Q-N-rich sequences, Protein Disorder


Pedro, L., Banos, R. C., Aznar, S., Madrid, C., Balsalobre, C., Juarez, A., (2011). Antibiotics shaping bacterial genome: Deletion of an IS91 flanked virulence determinant upon exposure to subinhibitory antibiotic concentrations PLoS ONE 6, (11), 11

The nucleoid-associated proteins Hha and YdgT repress the expression of the toxin a-hemolysin. An Escherichia coli mutant lacking these proteins overexpresses the toxin a-hemolysin encoded in the multicopy recombinant plasmid pANN202-312R. Unexpectedly, we could observe that this mutant generated clones that no further produced hemolysin (Hly(-)). Generation of Hly(-) clones was dependent upon the presence in the culture medium of the antibiotic kanamycin (km), a marker of the hha allele (hha::Tn5). Detailed analysis of different Hly(-) clones evidenced that recombination between partial IS91 sequences that flank the hly operon had occurred. A fluctuation test evidenced that the presence of km in the culture medium was underlying the generation of these clones. A decrease of the km concentration from 25 mg/l to 12.5 mg/l abolished the appearance of Hly(-) derivatives. We considered as a working hypothesis that, when producing high levels of the toxin (combination of the hha ydgT mutations with the presence of the multicopy hemolytic plasmid pANN202-312R), the concentration of km of 25 mg/l resulted subinhibitory and stimulated the recombination between adjacent IS91 flanking sequences. To further test this hypothesis, we analyzed the effect of subinhibitory km concentrations in the wild type E. coli strain MG1655 harboring the parental low copy number plasmid pHly152. At a km concentration of 5 mg/l, subinhibitory for strain MG1655 (pHly152), generation of Hly(-) clones could be readily detected. Similar results were also obtained when, instead of km, ampicillin was used. IS91 is flanking several virulence determinants in different enteric bacterial pathogenic strains from E. coli and Shigella. The results presented here evidence that stress generated by exposure to subinhibitory antibiotic concentrations may result in rearrangements of the bacterial genome. Whereas some of these rearrangements may be deleterious, others may generate genotypes with increased virulence, which may resume infection.

JTD Keywords: Promotes horizontal dissemination, Enterica serovar typhimurium, Escherichia-coli strains, Insertion-sequence IS91, H-NS, Adaptive amplification, Pathogenicity islands, Hemolysin


Sabaté, R., Espargaró, A., de Groot, N. S., Valle-Delgado, J. J., Fernàndez-Busquets, X., Ventura, S., (2010). The role of protein sequence and amino acid composition in amyloid formation: Scrambling and backward reading of IAPP amyloid fibrils Journal of Molecular Biology , 404, (2), 337-352

The specific functional structure of natural proteins is determined by the way in which amino acids are sequentially connected in the polypeptide. The tight sequence/structure relationship governing protein folding does not seem to apply to amyloid fibril formation because many proteins without any sequence relationship have been shown to assemble into very similar β-sheet-enriched structures. Here, we have characterized the aggregation kinetics, seeding ability, morphology, conformation, stability, and toxicity of amyloid fibrils formed by a 20-residue domain of the islet amyloid polypeptide (IAPP), as well as of a backward and scrambled version of this peptide. The three IAPP peptides readily aggregate into ordered, β-sheet-enriched, amyloid-like fibrils. However, the mechanism of formation and the structural and functional properties of aggregates formed from these three peptides are different in such a way that they do not cross-seed each other despite sharing a common amino acid composition. The results confirm that, as for globular proteins, highly specific polypeptide sequential traits govern the assembly pathway, final fine structure, and cytotoxic properties of amyloid conformations.

JTD Keywords: Amyloid formation, Islet amyloid polypeptide, Protein aggregation, Protein sequence, Retro proteins


Mir, M., Cameron, P. J., Zhong, X., Azzaroni, O., Alvarez, M., Knoll, W., (2009). Anti-fouling characteristics of surface-confined oligonucleotide strands bioconjugated on streptavidin platforms in the presence of nanomaterials Talanta 78, (3), 1102-6

This work describes our studies on the molecular design of interfacial architectures suitable for DNA sensing which could resist non-specific binding of nanomaterials commonly used as labels for amplifying biorecognition events. We observed that the non-specific binding of bio-nanomaterials to surface-confined oligonucleotide strands is highly dependent on the characteristics of the interfacial architecture. Thiolated double stranded oligonucleotide arrays assembled on Au surfaces evidence significant fouling in the presence of nanoparticles (NPs) at the nanomolar level. The non-specific interaction between the oligonucleotide strands and the nanomaterials can be sensitively minimized by introducing streptavidin (SAv) as an underlayer conjugated to the DNA arrays. The role of the SAv layer was attributed to the significant hydrophilic repulsion between the SAv-modified surface and the nanomaterials in close proximity to the interface, thus conferring outstanding anti-fouling characteristics to the interfacial architecture. These results provide a simple and straightforward strategy to overcome the limitations introduced by the non-specific binding of labels to achieve reliable detection of DNA-based biorecognition events.

JTD Keywords: DNA/ analysis, Gold, Nanostructures/ chemistry, Oligonucleotide Array Sequence Analysis/ instrumentation, Oligonucleotides/ chemistry, Streptavidin/ chemistry, Sulfhydryl Compounds


Mir, M., Homs, A., Samitier, J., (2009). Integrated electrochemical DNA biosensors for lab-on-a-chip devices Electrophoresis , 30, (19), 3386-3397

Analytical devices able to perform accurate and fast automatic DNA detection or sequencing procedures have many potential benefits in the biomedical and environmental fields. The conversion of biological or biochemical responses into quantifiable optical, mechanical or electronic signals is achieved by means of biosensors. Most of these transducing elements can be miniaturized and incorporated into lab-on-a-chip devices, also known as Micro Total Analysis Systems. The use of multiple DNA biosensors integrated in these miniaturized laboratories, which perform several analytical operations at the microscale, has many cost and efficiency advantages. Tiny amounts of reagents and samples are needed and highly sensitive, fast and parallel assays can be done at low cost. A particular type of DNA biosensors are the ones used based on electrochemical principles. These sensors offer several advantages over the popular fluorescence-based detection schemes. The resulting signal is electrical and can be processed by conventional electronics in a very cheap and fast manner. Furthermore, the integration and miniaturization of electrochemical transducers in a microsystem makes easier its fabrication in front of the most common currently used detection method. In this review, different electrochemical DNA biosensors integrated in analytical microfluidic devices are discussed and some early stage commercial products based on this strategy are presented.

JTD Keywords: DNA, Electrochemical DNA biosensors, Electrochemistry, Lab-on-a-chip, Micro Total Analysis systems, Field-effect transistors, Sequence-specific detection, Chemical-analysis systems, Solid-state nanopores, Carbon nanotubes, Microfluidic device, Electrical detection, Hybridization, Molecules, Sensor


Roca, Ignasi, Torrents, Eduard, Sahlin, Margareta, Gibert, Isidre, Sjoberg, Britt-Marie, (2008). NrdI essentiality for class Ib ribonucleotide reduction in streptococcus pyogenes Journal of Bacteriology , 190, (14), 4849-4858

The Streptococcus pyogenes genome harbors two clusters of class Ib ribonucleotide reductase genes, nrdHEF and nrdF*I*E*, and a second stand-alone nrdI gene, designated nrdI2. We show that both clusters are expressed simultaneously as two independent operons. The NrdEF enzyme is functionally active in vitro, while the NrdE*F* enzyme is not. The NrdF* protein lacks three of the six highly conserved iron-liganding side chains and cannot form a dinuclear iron site or a tyrosyl radical. In vivo, on the other hand, both operons are functional in heterologous complementation in Escherichia coli. The nrdF*I*E* operon requires the presence of the nrdI* gene, and the nrdHEF operon gained activity upon cotranscription of the heterologous nrdI gene from Streptococcus pneumoniae, while neither nrdI* nor nrdI2 from S. pyogenes rendered it active. Our results highlight the essential role of the flavodoxin NrdI protein in vivo, and we suggest that it is needed to reduce met-NrdF, thereby enabling the spontaneous reformation of the tyrosyl radical. The NrdI* flavodoxin may play a more direct role in ribonucleotide reduction by the NrdF*I*E* system. We discuss the possibility that the nrdF*I*E* operon has been horizontally transferred to S. pyogenes from Mycoplasma spp.

JTD Keywords: Group-a streptococcus, Bacillus-subtilis genes, Escherichia-coli, Corynebacterium-ammoniagenes, Mycobacterium-tuberculosis, Expression analysis, Genome sequence, Small-subunit, Salmonella-typhimurium, Iron center


Banos, R. C., Pons, J. I., Madrid, C., Juarez, A., (2008). A global modulatory role for the Yersinia enterocolitica H-NS protein Microbiology , 154, (5), 1281-1289

The H-NS protein plays a significant role in the modulation of gene expression in Gram-negative bacteria. Whereas isolation and characterization of hns mutants in Escherichia coli, Salmonella and Shigella represented critical steps to gain insight into the modulatory role of H-NS, it has hitherto not been possible to isolate hns mutants in Yersinia. The hns mutation is considered to be deleterious in this genus. To study the modulatory role of H-NS in Yersinia we circumvented hns lethality by expressing in Y. enterocolitica a truncated H-NS protein known to exhibit anti-H-NS activity in E. coli (H-NST(EPEC)). Y. enterocolitica cells expressing H-NST(EPEC) showed an altered growth rate and several differences in the protein expression pattern, including the ProV protein, which is modulated by H-NS in other enteric bacteria. To further confirm that H-NST(EPEC) expression in Yersinia can be used to demonstrate H-NS-dependent regulation in this genus, we used this approach to show that H-NS modulates expression of the YmoA protein.

JTD Keywords: Bacterial Proteins/biosynthesis/genetics/ physiology, DNA-Binding Proteins/biosynthesis/genetics/ physiology, Electrophoresis, Gel, Two-Dimensional, Gene Expression Profiling, Gene Expression Regulation, Bacterial, Genes, Essential, Proteome/analysis, RNA, Bacterial/biosynthesis, RNA, Messenger/biosynthesis, Reverse Transcriptase Polymerase Chain Reaction, Sequence Deletion, Yersinia enterocolitica/chemistry/genetics/growth & development/ physiology