by Keyword: Control architecture
Amil, A. F., Maffei, G., Puigbò, J. Y., Arsiwalla, X. D., Verschure, P., (2019). Robust postural stabilization with a biomimetic hierarchical control architecture Biomimetic and Biohybrid Systems 8th International Conference, Living Machines 2019 (Lecture Notes in Computer Science) , Springer, Cham (Nara, Japan) 11556, 321-324
Fast online corrections during anticipatory movements are a signature of robustness in biological motor control. In this regard, a previous study suggested that anticipatory postural control can be recast as a sensory-sensory predictive process, where hierarchically connected cerebellar microcircuits reflect the causal sequence of events preceding a postural disturbance. Hence, error monitoring signals from higher sensory layers inform lower layers about violations of expectations, affording fast corrections when the normal sequence is broken. Here we generalize this insight and prove that the proposed hierarchical control architecture can deal with different types of alterations in the causal structure of the environment, therefore extending the limits of performance.
JTD Keywords: Anticipatory control, Cerebellum, Control architecture, Robustness