by Keyword: Endopeptidase k
Macor, LP, Colombi, S, Tamarit, JL, Engel, E, Pérez-Madrigal, MM, García-Torres, J, Alemán, C, (2023). Immediate-sustained lactate release using alginate hydrogel assembled to proteinase K/polymer electrospun fibers International Journal Of Biological Macromolecules 238, 124117
This work proposes a microfibers-hydrogel assembled composite as delivery vehicle able to combine into a single system both burst and prolonged release of lactate. The prolonged release of lactate has been achieved by electrospinning a mixture of polylactic acid and proteinase K (26.0 mg of proteinase K and 0.99 g of PLA dissolved in 6 mL of 2:1 chloroform:acetone in the optimal case), which is a protease that catalyzes the degradation of polylactic acid into lactate. The degradation of microfibers into lactate reflects that proteinase K preserves its enzymatic activity even after the electrospinning process because of the mild operational conditions used. Besides, burst release is obtained from the lactate-loaded alginate hydrogel. The successful assembly between the lactate-loaded hydrogel and the polylactic acid/proteinase K fibers has been favored by applying a low-pressure (0.3 mbar at 300 W) oxygen plasma treatment, which transforms hydrophobic fibers into hydrophilic while the enzymatic activity is still maintained. The composite displays both fast (< 24 h) and sustained (> 10 days) lactate release, and allows the modulation of the release by adjusting either the amount of loaded lactate or the amount of active enzyme.Copyright © 2023. Published by Elsevier B.V.
JTD Keywords: biodegradable fibers, proteases, regeneration, repair, Alginate, Alginates, Biodegradable fibers, Endopeptidase k, Hydrogels, Lactic acid, Myocardial-infarction, Polymers, Proteases