by Keyword: nanoindentation
Lodoso-Torrecilla, Irene, Konka, Joanna, Kreuzer, Martin, Jimenez-Pique, Emilio, Espanol, Montserrat, Ginebra, Maria-Pau, (2024). Quality assessment of regenerated bone in intraosseous and intramuscular scaffolds by spectroscopy and nanoindentation Biomaterials Advances 164, 213982
The efficiency of synthetic bone grafts can be evaluated either in osseous sites, to analyze osteoconduction or ectopically, in intramuscular or subcutaneous sites, to assess osteoinduction. Bone regeneration is usually evaluated in terms of the presence and quantity of newly formed bone, but little information is normally provided on the quality of this bone. Here, we propose a novel approach to evaluate bone quality by the combined use of spectroscopy techniques and nanoindentation. Calcium phosphate scaffolds with different architectures, either foamed or 3D-printed, that were implanted in osseous or intramuscular defects in Beagle dogs for 6 or 12 weeks were analyzed. ATR-FTIR and Raman spectroscopy were performed, and mineral-to-matrix ratio, crystallinity, and mineral and collagen maturity were calculated and mapped for the newly regenerated bone and the mature cortical bone from the same specimen. For all the parameters studied, the newly-formed bone showed lower values than the mature host bone. Hardness and elastic modulus were determined by nanoindentation and, in line with what was observed by spectroscopy, lower values were observed in the regenerated bone than in the cortical bone. While, as expected, all techniques pointed to an increase in the maturity of the newly-formed bone between 6 and 12 weeks, the bone found in the intramuscular samples after 12 weeks presented lower mineralization than the intraosseous counterparts. Moreover, scaffold architecture also played a role in bone maturity, with the foamed scaffolds showing higher mineralization and crystallinity than the 3D-printed scaffolds after 12 weeks.
JTD Keywords: Atr-ftir, Bone regeneration, Calcium-phosphate, Ectopic implantation, Implant interface, In-vivo, Indentation, Mechanical-properties, Micromechanical properties, Nanoindentation, Orthotropic implantation, Raman spectroscop, Raman-spectroscopy, Strengt, Substitutes
Munoz-Galan, Helena, Marzoa, Antonio, Bertran, Oscar, Barbera, Francesc, Jimenez-Pique, Emilio, Ahumada, Oscar, Perez-Madrigal, Maria M, Aleman, Carlos, (2024). Optomechanical, Computer Simulation, and Nanoindentation Studies on Tunable Click Hydrogels: Microscopic Insights Acs Applied Polymer Materials 6, 12176-12185
The properties of thiol-yne click polyethylene glycol (PEG)-based hydrogels, which can be tuned by controlling the cis and trans stereochemistry through the gelation conditions, have been investigated at the micro- and nanoscale using optomechanics, atomistic molecular dynamics (MD) simulations, and nanoindentation. Optomechanical measurements on thin films and computer MD simulations have shown that the trans hydrogel is less porous than the cis hydrogel, which is in agreement with both the swelling behavior and the pore size determined for macroscopic 3D hydrogel samples. On the other hand, results from optomechanical measurements using both static and dynamic modes, as well as nanoindentation profiles obtained for thin films adhered to glass substrates, reflect that the trans hydrogel is stiffer than the cis one. Overall, despite the few drawbacks of the techniques employed in this work, from a qualitative point of view, the properties of click PEG-based hydrogels at the micro- and nanoscale follow a behavior similar to that found for 3D macroscopic samples. Considering the wide range of mechanical properties of human tissues (e.g., Young's modulus ranges from 0.1 kPa to many tens of MPa) and the extensive use of hydrogels in applications such as tissue regeneration and tissue-specific drug delivery, the availability of a hydrogel with tunable properties opens the door to targeted biomedicine.
JTD Keywords: Algorithm, Elastic modulu, Ewal, Injectable hydrogels, Molecular dynamics, Molecular-dynamics, Nanoindentation, Optomechanical sensors, Polyethylene glycol hydrogels, Surface stress, Thiol-yneclick hydrogels
Colombi S, Macor LP, Ortiz-Membrado L, Pérez-Amodio S, Jiménez-Piqué E, Engel E, Pérez-Madrigal MM, García-Torres J, Alemán C, (2023). Enzymatic Degradation of Polylactic Acid Fibers Supported on a Hydrogel for Sustained Release of Lactate Acs Applied Bio Materials 6, 3889-3901
The incorporation of exogenous lactate into cardiac tissues is a regenerative strategy that is rapidly gaining attention. In this work, two polymeric platforms were designed to achieve a sustained release of lactate, combining immediate and prolonged release profiles. Both platforms contained electrospun poly(lactic acid) (PLA) fibers and an alginate (Alg) hydrogel. In the first platform, named L/K(x)/Alg-PLA, lactate and proteinase K (x mg of enzyme per 1 g of PLA) were directly loaded into the Alg hydrogel, into which PLA fibers were assembled. In the second platform, L/Alg-K(x)/PLA, fibers were produced by electrospinning a proteinase K:PLA solution and, subsequently, assembled within the lactate-loaded hydrogel. After characterizing the chemical, morphological, and mechanical properties of the systems, as well as their cytotoxicity, the release profiles of the two platforms were determined considering different amounts of proteinase K (x = 5.2, 26, and 52 mg of proteinase K per 1 g of PLA), which is known to exhibit a broad cleavage activity. The profiles obtained using L/Alg-K(x)/PLA platforms with x = 26 and 52 were the closest to the criteria that must be met for cardiac tissue regeneration. Finally, the amount of lactate directly loaded in the Alg hydrogel for immediate release and the amount of protein in the electrospinning solution were adapted to achieve a constant lactate release of around 6 mM per day over 1 or 2 weeks. In the optimized bioplatform, in which 6 mM lactate was loaded in the hydrogel, the amount of fibers was increased by a factor of ×3, the amount of enzyme was adjusted to 40 mg per 1 g of PLA, and a daily lactate release of 5.9 ± 2.7 mM over a period of 11 days was achieved. Accordingly, the engineered device fully satisfied the characteristics and requirements for heart tissue regeneration.
JTD Keywords: biodegradable fibers, cardiac tissue regeneration, cell, drug-release, elastic-modulus, electrospinning, heart, nanoindentation, plasma treatment, proteinase, scaffold, stiffness, Alginate, Biodegradable fibers, Cardiac tissue regeneration, Electrospinning, Nanoindentation, Plasma treatment, Proteinase, Skeletal-muscle
Claudia, GM, Ivan, G, Laia, OM, Emilio, JP, Maria-Pau, G, Maurizio, V, Luis, CJ, Marta, P, (2023). Influence of ECAP process on mechanical, corrosion and bacterial properties of Zn-2Ag alloy for wound closure devices Materials & Design 228, 111817
Actual polymeric wound closure devices are not optimal for load-bearing applications due to the low mechanical properties and the risk of inflammation and bacterial infection mainly produced by multifil-ament and braided configurations. Biodegradable metallic Zn alloys are promising materials candidates; however, mechanical performance, corrosion behaviour, and biological response should be controlled in order to inhibit the risk of inflammation and bacterial infection. To this end, a Zn-2Ag (2 wt% Ag) alloy was processed by ECAP to evaluate the concurrent combined effect of grain refinement and Ag alloying on biodegradation and antibacterial activity. Two ECAP cycles were successfully applied to a Zn-2Ag alloy obtaining a homogeneous ultra-fine-grained structure in which nanoindentation maps suggested isotro-pic mechanical properties. Lower UTS and YS with higher elongation was reported after ECAP with similar corrosion rates as before processing. ECAP processed samples showed a homogeneous Ag+ release below the minimum inhibitory concentration for S. Aureus and no antibacterial effect was observed by diffusion. As expected, the presence of Ag in Zn-Ag alloys reduced bacterial attachment. Nevertheless, ECAP processed Zn-2Ag provided an excellent antibacterial activity after 3 h probably caused by the uniformly degraded and thus, non- stable, surface observed after bacterial adhesion.(c) 2023 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
JTD Keywords: Behavior, Binary alloys, Biodegradable zinc-alloys, Biomaterials, Equal channel angular pressing, Grain-refinement, In-vitro degradation, Mg, Microstructure, Nanoindentation, Progress, Staphylococcus-aureus, Temperature superplasticity, Ultrafine-grained materials, Zinc alloys, Zn alloys
Sans, J, Arnau, M, Roa, JJ, Turon, P, Alernan, C, (2022). Tailorable Nanoporous Hydroxyapatite Scaffolds for Electrothermal Catalysis Acs Applied Nano Materials 5, 8526-8536
Polarized hydroxyapatite (HAp) scaffolds with customized architecture at the nanoscale have been presented as a green alternative to conventional catalysts used for carbon and dinitrogen fixation. HAp printable inks with controlled nanoporosity and rheological properties have been successfully achieved by incorporating Pluronic hydrogel. Nanoporous scaffolds with good mechanical properties, as demonstrated by means of the nanoindentation technique, have been obtained by a sintering treatment and the posterior thermally induced polarization process. Their catalytic activity has been evaluated by considering three different key reactions (all in the presence of liquid water): (1) the synthesis of amino acids from gas mixtures of N-2, CO2, and CH4; (2) the production of ethanol from gas mixtures of CO2 and CH4; and (3) the synthesis of ammonia from N-2 gas. Comparison of the yields obtained by using nanoporous and nonporous (conventional) polarized HAp catalysts shows that both the nanoporosity and water absorption capacity of the former represent a drawback when the catalytic reaction requires auxiliary coating layers, as for example for the production of amino acids. This is because the surface nanopores achieved by incorporating Pluronic hydrogel are completely hindered by such auxiliary coating layers. On the contrary, the catalytic activity improves drastically for reactions in which the HAp-based scaffolds with enhanced nanoporosity are used as catalysts. More specifically, the carbon fixation from CO2 and CH4 to yield ethanol improves by more than 3000% when compared with nonporous HAp catalyst. Similarly, the synthesis of ammonia by dinitrogen fixation increases by more than 2000%. Therefore, HAp catalysts based on nanoporous scaffolds exhibit an extraordinary potential for scalability and industrial utilization for many chemical reactions, enabling a feasible green chemistry alternative to catalysts based on heavy metals.
JTD Keywords: Amino acids, Amino-acids, Ammonium production, Bone, Carbon fixation, Composites, Constitutive phases, Decarbonization, Dinitrogen, Ditrogen fixation, Elastic-modulus, Electrophotosynthesis, Ethanol production, Hardness, Indentation, Nanoindentation, Pluronic hydrogel, Polarized hydroxyapatite
García-Mintegui, C, Córdoba, LC, Buxadera-Palomero, J, Marquina, A, Jiménez-Piqué, E, Ginebra, MP, Cortina, JL, Pegueroles, M, (2021). Zn-Mg and Zn-Cu alloys for stenting applications: From nanoscale mechanical characterization to in vitro degradation and biocompatibility Bioactive Materials 6, 4430-4446
In the recent decades, zinc (Zn) and its alloys have been drawing attention as promising candidates for bioresorbable cardiovascular stents due to its degradation rate more suitable than magnesium (Mg) and iron (Fe) alloys. However, its mechanical properties need to be improved in order to meet the criteria for vascular stents. This work investigates the mechanical properties, biodegradability and biocompatibility of Zn-Mg and Zn-Cu alloys in order to determine a proper alloy composition for optimal stent performance. Nanoindentation measurements are performed to characterize the mechanical properties at the nanoscale as a function of the Zn microstructure variations induced by alloying. The biodegradation mechanisms are discussed and correlated to microstructure, mechanical performance and bacterial/cell response. Addition of Mg or Cu alloying elements refined the microstructure of Zn and enhanced yield strength (YS) and ultimate tensile strength (UTS) proportional to the volume fraction of secondary phases. Zn-1Mg showed the higher YS and UTS and better performance in terms of degradation stability in Hanks’ solution. Zn-Cu alloys presented an antibacterial effect for S. aureus controlled by diffusion mechanisms and by contact. Biocompatibility was dependent on the degradation rate and the nature of the corrosion products.
JTD Keywords: behavior, biocompatibility, biodegradable metals, bioresorbable metals, bioresorbable scaffold, copper, corrosion properties, elastic-modulus, galvanic corrosion, microstructure, nanoindentation, redox homeostasis, zinc, Biocompatibility, Bioresorbable metals, Galvanic corrosion, Nanoindentation, Room-temperature superplasticity, Zinc alloys
Puiggalí-Jou, A, Babeli, I, Roa, JJ, Zoppe, JO, Garcia-Amorós, J, Ginebra, MP, Alemán, C, García-Torres, J, (2021). Remote Spatiotemporal Control of a Magnetic and Electroconductive Hydrogel Network via Magnetic Fields for Soft Electronic Applications Acs Applied Materials & Interfaces 13, 42486-42501
Multifunctional hydrogels are a class of materials offering new opportunities for interfacing living organisms with machines due to their mechanical compliance, biocompatibility, and capacity to be triggered by external stimuli. Here, we report a dual magnetic- and electric-stimuli-responsive hydrogel with the capacity to be disassembled and reassembled up to three times through reversible cross-links. This allows its use as an electronic device (e.g., temperature sensor) in the cross-linked state and spatiotemporal control through narrow channels in the disassembled state via the application of magnetic fields, followed by reassembly. The hydrogel consists of an interpenetrated polymer network of alginate (Alg) and poly(3,4-ethylenedioxythiophene) (PEDOT), which imparts mechanical and electrical properties, respectively. In addition, the incorporation of magnetite nanoparticles (Fe3O4 NPs) endows the hydrogel with magnetic properties. After structural, (electro)chemical, and physical characterization, we successfully performed dynamic and continuous transport of the hydrogel through disassembly, transporting the polymer-Fe3O4 NP aggregates toward a target using magnetic fields and its final reassembly to recover the multifunctional hydrogel in the cross-linked state. We also successfully tested the PEDOT/Alg/Fe3O4 NP hydrogel for temperature sensing and magnetic hyperthermia after various disassembly/re-cross-linking cycles. The present methodology can pave the way to a new generation of soft electronic devices with the capacity to be remotely transported.
JTD Keywords: conductive hydrogel, constructs, magnetic field, magnetite nanoparticle, nanoindentation, soft electronics, spatiotemporal control, Conductive hydrogel, Conductive hydrogels, Magnetic field, Magnetite nanoparticle, Soft electronics, Spatiotemporal control
Molina, B. G., Cuesta, S., Besharatloo, H., Roa, J. J., Armelin, E., Alemán, C., (2019). Free-standing taradaic motors based on biocompatible nanoperforated poly(lactic acid) layers and electropolymerized poly(3,4-ethylenedioxythiophene) ACS Applied Materials and Interfaces 11, (32), 29427-29435
The electro-chemo-mechanical response of robust and flexible free-standing films made of three nanoperforated poly(lactic acid) (pPLA) layers separated by two anodically polymerized poly(3,4-ethylenedioxythiophene) (PEDOT) layers has been demonstrated. The mechanical and electrochemical properties of these films, which are provided by pPLA and PEDOT, respectively, have been studied by nanoindentation, cyclic voltammetry, and galvanostatic charge-discharge assays. The unprecedented combination of properties obtained for this system is appropriated for its utilization as a Faradaic motor, also named artificial muscle. Application of square potential waves has shown important bending movements in the films, which can be repeated for more than 500 cycles without damaging its mechanical integrity. Furthermore, the actuator is able to push a huge amount of mass, as it has been proved by increasing the mass of the passive pPLA up to 328% while keeping the mass of electroactive PEDOT unaltered.
JTD Keywords: Actuator, Artificial muscle, Conducting polymer, Nanoindentation
Pellequer, J. L., Parot, P., Navajas, D., Kumar, S., Svetli, Scheuring, S., Hu, J., Li, B., Engler, A., Sousa, S., Lekka, M., Szymo, Schillers, H., Odorico, M., Lafont, F., Janel, S., Rico, F., (2019). Fifteen years of Servitude et Grandeur to the application of a biophysical technique in medicine: The tale of AFMBioMed Journal of Molecular Recognition 32, (3), e2773
AFMBioMed is the founding name under which international conferences and summer schools are organized around the application of atomic force microscopy in life sciences and nanomedicine. From its inception at the Atomic Energy Commission in Marcoule near 2004 to its creation in 2007 and to its 10th anniversary conference in Krakow, a brief narrative history of its birth and rise will demonstrate how and what such an organization brings to laboratories and the AFM community. With the current planning of the next AFMBioMed conference in Münster in 2019, it will be 15 years of commitment to these events.
JTD Keywords: Atomic Force Microscopy, Single molecules, Biomechanics, Force spectroscopy, High-speed AFM, Imaging, Nanoindentation, Nanomedicine, Nanotoxicology
Valero, C., Navarro, B., Navajas, D., García-Aznar, J. M., (2016). Finite element simulation for the mechanical characterization of soft biological materials by atomic force microscopy Journal of the Mechanical Behavior of Biomedical Materials , 62, 222-235
The characterization of the mechanical properties of soft materials has been traditionally performed through uniaxial tensile tests. Nevertheless, this method cannot be applied to certain extremely soft materials, such as biological tissues or cells that cannot be properly subjected to these tests. Alternative non-destructive tests have been designed in recent years to determine the mechanical properties of soft biological tissues. One of these techniques is based on the use of atomic force microscopy (AFM) to perform nanoindentation tests. In this work, we investigated the mechanical response of soft biological materials to nanoindentation with spherical indenters using finite element simulations. We studied the responses of three different material constitutive laws (elastic, isotropic hyperelastic and anisotropic hyperelastic) under the same process and analyzed the differences thereof. Whereas linear elastic and isotropic hyperelastic materials can be studied using an axisymmetric simplification, anisotropic hyperelastic materials require three-dimensional analyses. Moreover, we established the limiting sample size required to determine the mechanical properties of soft materials while avoiding boundary effects. Finally, we compared the results obtained by simulation with an estimate obtained from Hertz theory. Hertz theory does not distinguish between the different material constitutive laws, and thus, we proposed corrections to improve the quantitative measurement of specific material properties by nanoindentation experiments.
JTD Keywords: AFM, Cell mechanics, FEM, Nanoindentation, Soft-tissue
Andreu, I., Luque, T., Sancho, A., Pelacho, B., Iglesias-García, O., Melo, E., Farré, R., Prósper, F., Elizalde, M. R., Navajas, D., (2014). Heterogeneous micromechanical properties of the extracellular matrix in healthy and infarcted hearts Acta Biomaterialia 10, (7), 3235-3242
Infarcted hearts are macroscopically stiffer than healthy organs. Nevertheless, although cell behavior is mediated by the physical features of the cell niche, the intrinsic micromechanical properties of healthy and infarcted heart extracellular matrix (ECM) remain poorly characterized. Using atomic force microscopy, we studied ECM micromechanics of different histological regions of the left ventricle wall of healthy and infarcted mice. Hearts excised from healthy (n = 8) and infarcted mice (n = 8) were decellularized with sodium dodecyl sulfate and cut into 12 μm thick slices. Healthy ventricular ECM revealed marked mechanical heterogeneity across histological regions of the ventricular wall with the effective Young's modulus ranging from 30.2 ± 2.8 to 74.5 ± 8.7 kPa in collagen- and elastin-rich regions of the myocardium, respectively. Infarcted ECM showed a predominant collagen composition and was 3-fold stiffer than collagen-rich regions of the healthy myocardium. ECM of both healthy and infarcted hearts exhibited a solid-like viscoelastic behavior that conforms to two power-law rheology. Knowledge of intrinsic micromechanical properties of the ECM at the length scale at which cells sense their environment will provide further insight into the cell-scaffold interplay in healthy and infarcted hearts.
JTD Keywords: Atomic force microscopy, Extracellular matrix, Heart scaffold, Nanoindentation, Viscoelasticity