by Keyword: Eudragit
Caddeo, C, Gabriele, M, Nácher, A, Fernàndez-Busquets, X, Valenti, D, Fadda, AM, Pucci, L, Manconi, M, (2021). Resveratrol and artemisinin eudragit-coated liposomes: A strategy to tackle intestinal tumors International Journal Of Pharmaceutics 592, 120083
© 2020 Elsevier B.V. Resveratrol and artemisinin, two naturally occurring compounds with a wide range of biological activities, have been reported to exert antitumor effects against several types of cancer. In this work, Eudragit-coated liposomes were developed to safely transport resveratrol and artemisinin through the gastrointestinal tract and target the intestine. The physico-chemical properties of the Eudragit-coated liposomes were assessed by light scattering and cryogenic transmission electron microscopy. Nanosized (around 100 nm), spherical or elongated, unilamellar vesicles were produced. The protective effect of the Eudragit coating was confirmed by assessing the physical stability of the vesicles in fluids mimicking the gastrointestinal environment. Furthermore, the vesicles were found to exert a pro-oxidant activity in intestinal adenocarcinoma cells, which resulted in a marked mortality due to the generation of reactive oxygen species (ROS). A time- and dose-dependent cell growth inhibitory effect was detected, with elevated ROS levels when resveratrol and artemisinin were combined. Therefore, the proposed formulations may represent a valuable means to counteract intestinal tumor growth.
JTD Keywords: antitumor, artemisinin, eudragit, intestinal delivery, liposomes, Antitumor, Artemisinin, Eudragit, Intestinal delivery, Liposomes, Resveratrol
Caddeo, C., Gabriele, M., Fernàndez-Busquets, X., Valenti, D., Fadda, A. M., Pucci, L., Manconi, M., (2019). Antioxidant activity of quercetin in Eudragit-coated liposomes for intestinal delivery International Journal of Pharmaceutics 565, 64-69
Quercetin, a natural polyphenol with strong antioxidant activity, was loaded in Eudragit-coated liposomes conceived for intestinal delivery. Eudragit was used to form a protective shell on the surface of liposomes to resist gastric environment and allow the delivery of quercetin to the intestine. The physico-chemical properties of the liposomes were assessed by light scattering and cryogenic transmission electron microscopy. Small, spherical, uni- and bilamellar liposomes were produced, with the presence of multilamellar structures in Eudragit-coated liposomes. The Eudragit coating increased the physical stability of the vesicular system in fluids mimicking the gastrointestinal environment. Further, the incorporation of quercetin in the vesicular system did not affect its intrinsic antioxidant activity, as DPPH radical was almost completely inhibited, and the vesicles were also capable of ensuring optimal protection against oxidative stress in human intestinal cells by reducing reactive oxygen species (ROS)production. The proposed approach based on quercetin vesicular formulations may be of value in the treatment of pathological conditions associated with intestinal oxidative stress.
JTD Keywords: Antioxidant, Eudragit, HT-29 cells, Intestinal delivery, Liposomes, Quercetin
Manconi, M., Manca, M. L., Escribano-Ferrer, E., Coma-Cros, E. M., Biosca, A., Lantero, E., Fernàndez-Busquets, X., Fadda, A. M., Caddeo, C., (2019). Nanoformulation of curcumin-loaded eudragit-nutriosomes to counteract malaria infection by a dual strategy: Improving antioxidant intestinal activity and systemic efficacy International Journal of Pharmaceutics 556, 82-88
In this paper, nutriosomes (phospholipid vesicles associated with Nutriose® FM06) were modified to obtain new systems aimed at enhancing the efficacy of curcumin in counteracting malaria infection upon oral administration. Eudragit® L100, a pH-sensitive co-polymer, was added to these vesicles, thus obtaining eudragit-nutriosomes, to improve their in vivo performances. Liposomes without eudragit and nutriose were also prepared as a reference. Cryo-TEM images showed the formation of multicompartment vesicles, with mean diameter around 300 nm and highly negative zeta potential. Vesicles were stable in fluids mimicking the gastro-intestinal content due to the high phospholipid concentration and the presence of gastro-resistant eudragit and digestion-resistant nutriose. Eudragit-nutriosomes disclosed promising performances in vitro and in vivo: they maximized the ability of curcumin to counteract oxidative stress in intestinal cells (Caco-2), which presumably reinforced its systemic efficacy. Orally-administered curcumin-loaded eudragit-nutriosomes increased significantly the survival of malaria-infected mice relative to free curcumin-treated controls.
JTD Keywords: Eudragit® L100, Nutriose® FM06, Nutriosomes, Curcumin, Oral administration, Malaria
Martí Coma-Cros, Elisabet, Biosca, Arnau, Lantero, Elena, Manca, Maria, Caddeo, Carla, Gutiérrez, Lucía, Ramírez, Miriam, Borgheti-Cardoso, Livia, Manconi, Maria, Fernàndez-Busquets, Xavier, (2018). Antimalarial activity of orally administered curcumin incorporated in Eudragit®-containing liposomes International Journal of Molecular Sciences 19, (5), 1361
Curcumin is an antimalarial compound easy to obtain and inexpensive, having shown little toxicity across a diverse population. However, the clinical use of this interesting polyphenol has been hampered by its poor oral absorption, extremely low aqueous solubility and rapid metabolism. In this study, we have used the anionic copolymer Eudragit® S100 to assemble liposomes incorporating curcumin and containing either hyaluronan (Eudragit-hyaluronan liposomes) or the water-soluble dextrin Nutriose® FM06 (Eudragit-nutriosomes). Upon oral administration of the rehydrated freeze-dried nanosystems administered at 25/75 mg curcumin·kg−1·day−1, only Eudragit-nutriosomes improved the in vivo antimalarial activity of curcumin in a dose-dependent manner, by enhancing the survival of all Plasmodium yoelii-infected mice up to 11/11 days, as compared to 6/7 days upon administration of an equal dose of the free compound. On the other hand, animals treated with curcumin incorporated in Eudragit-hyaluronan liposomes did not live longer than the controls, a result consistent with the lower stability of this formulation after reconstitution. Polymer-lipid nanovesicles hold promise for their development into systems for the oral delivery of curcumin-based antimalarial therapies.
JTD Keywords: Malaria, Curcumin, Nanomedicine, Oral administration, Lipid nanovesicles, Eudragit, Nutriose, Hyaluronan, Plasmodium yoelii