by Keyword: Fabry disease
Seras-Franzoso, J, Diaz-Riascos, ZV, Corchero, JL, González, P, Garcia-Aranda, N, Mandaña, M, Riera, R, Boullosa, A, Mancilla, S, Grayston, A, Moltó-Abad, M, Garcia-Fruitós, E, Mendoza, R, Pintos-Morell, G, Albertazzi, L, Rosell, A, Casas, J, Villaverde, A, Schwartz, S, Abasolo, I, (2021). Extracellular vesicles from recombinant cell factories improve the activity and efficacy of enzymes defective in lysosomal storage disorders Journal Of Extracellular Vesicles 10, e12058
In the present study the use of extracellular vesicles (EVs) as vehicles for therapeutic enzymes in lysosomal storage disorders was explored. EVs were isolated from mammalian cells overexpressing alpha-galactosidase A (GLA) or N-sulfoglucosamine sulfohydrolase (SGSH) enzymes, defective in Fabry and Sanfilippo A diseases, respectively. Direct purification of EVs from cell supernatants was found to be a simple and efficient method to obtain highly active GLA and SGSH proteins, even after EV lyophilization. Likewise, EVs carrying GLA (EV-GLA) were rapidly uptaken and reached the lysosomes in cellular models of Fabry disease, restoring lysosomal functionality much more efficiently than the recombinant enzyme in clinical use. In vivo, EVs were well tolerated and distributed among all main organs, including the brain. DiR-labelled EVs were localized in brain parenchyma 1 h after intra-arterial (internal carotid artery) or intravenous (tail vein) administrations. Moreover, a single intravenous administration of EV-GLA was able to reduce globotriaosylceramide (Gb3) substrate levels in clinically relevant tissues, such kidneys and brain. Overall, our results demonstrate that EVs from cells overexpressing lysosomal enzymes act as natural protein delivery systems, improving the activity and the efficacy of the recombinant proteins and facilitating their access to organs neglected by conventional enzyme replacement therapies.
JTD Keywords: alpha?galactosidase a, alpha‐galactosidase a, drug delivery, enzyme replacement therapy, fabry disease, lysosomal storage disorders, n-sulfoglucosamine sulfohydrolase, n?sulfoglucosamine sulfohydrolase, n‐sulfoglucosamine sulfohydrolase, sanfilippo syndrome, Alpha-galactosidase a, Drug delivery, Enzyme replacement therapy, Fabry disease, Lysosomal storage disorders, N-sulfoglucosamine sulfohydrolase, Sanfilippo syndrome
Giannotti, M. I., Abasolo, Ibane, Oliva, Mireia, Andrade, Fernanda, García-Aranda, Natalia, Melgarejo, Marta, Pulido, Daniel, Corchero, José Luis, Fernández, Yolanda, Villaverde, Antonio, Royo, Miriam, Garcia-Parajo, Maria F., Sanz, Fausto, Schwartz Jr, Simó, (2016). Highly versatile polyelectrolyte complexes for improving the enzyme replacement therapy of lysosomal storage disorders ACS Applied Materials & Interfaces 8, (39), 25741–25752
Lysosomal storage disorders are currently treated by enzyme replacement therapy (ERT) through the direct administration of the unprotected recombinant protein to the patients. Herein we present an ionically cross-linked polyelectrolyte complex (PEC) composed of trimethyl chitosan (TMC) and α-galactosidase A (GLA), the defective enzyme in Fabry disease, with the capability of directly targeting endothelial cells by incorporating peptide ligands containing the RGD sequence. We assessed the physicochemical properties, cytotoxicity, and hemocompatibility of RGD-targeted and untargeted PECs, the uptake by endothelial cells and the intracellular activity of PECs in cell culture models of Fabry disease. Moreover, we also explored the effect of different freeze-drying procedures in the overall activity of the PECs. Our results indicate that the use of integrin-binding RGD moiety within the PEC increases their uptake and the efficacy of the GLA enzyme, while the freeze-drying allows the activity of the therapeutic protein to remain intact. Overall, these results highlight the potential of TMC-based PECs as a highly versatile and feasible drug delivery system for improving the ERT of lysosomal storage disorders.
JTD Keywords: Enzyme replacement therapy, Fabry disease, Lysosomal delivery, Nanomedicine, Polyelectrolyte complexes, Trimethyl chitosan, α-galactosidase A