DONATE

Publications

by Keyword: drug delivery

Pawar N, Peña-Figueroa M, Verde-Sesto E, Maestro A, Alvarez-Fernandez A, (2024). Exploring the Interaction of Lipid Bilayers with Curcumin-Laponite Nanoparticles: Implications for Drug Delivery and Therapeutic Applications. Small , e2406885

Curcumin, the active compound in turmeric, is renowned for its anti-inflammatory, antioxidant, and antimicrobial properties, making it beneficial for treating conditions like arthritis, neurodegenerative diseases, and various cancers. Despite its promising therapeutic potential, curcumin's poor bioavailability-due to its rapid metabolism and low solubility-limits its clinical efficacy. To address this, recent research has focused on enhancing curcumin delivery using nanoparticles, liposomes, and novel nanomaterials. Among these, laponite, a synthetic nanoclay, has shown promise in improving curcumin delivery due to its unique properties, including large surface area, dual charge, and stability in solution. This study explores the use of curcumin-laponite nanoparticles as carrier vehicles for controlled delivery to in vitro model membranes. Utilizing advanced techniques such as neutron reflectometry, atomic force microscopy, quartz crystal microbalance with dissipation, and infrared spectroscopy, the interaction between curcumin-laponite nanoparticles and solid-supported lipid bilayers is monitored, revealing enhanced stability and controlled release of curcumin across the membrane. These findings pave the way for the development of curcumin-based therapies targeting cardiovascular, neurological, and oncological diseases, leveraging the synergistic effects of curcumin's biological activity and laponite's delivery capabilities.

JTD Keywords: Curcumin, Drug delivery, Laponite, Neutron reflectivity, Supported lipid bilayers


Fraire JC, Prado-Morales C, Aldaz Sagredo A, Caelles AG, Lezcano F, Peetroons X, Bakenecker AC, Di Carlo V, Sánchez S, (2024). Swarms of Enzymatic Nanobots for Efficient Gene Delivery Acs Applied Materials & Interfaces 16, 47192-47205

This study investigates the synthesis and optimization of nanobots (NBs) loaded with pDNA using the layer-by-layer (LBL) method and explores the impact of their collective motion on the transfection efficiency. NBs consist of biocompatible and biodegradable poly(lactic-co-glycolic acid) (PLGA) nanoparticles and are powered by the urease enzyme, enabling autonomous movement and collective swarming behavior. In vitro experiments were conducted to validate the delivery efficiency of fluorescently labeled NBs, using two-dimensional (2D) and three-dimensional (3D) cell models: murine urothelial carcinoma cell line (MB49) and spheroids from human urothelial bladder cancer cells (RT4). Swarms of pDNA-loaded NBs showed enhancements of 2.2- to 2.6-fold in delivery efficiency and 6.8- to 8.1-fold in material delivered compared to inhibited particles (inhibited enzyme) and the absence of fuel in a 2D cell culture. Additionally, efficient intracellular delivery of pDNA was demonstrated in both cell models by quantifying and visualizing the expression of eGFP. Swarms of NBs exhibited a >5-fold enhancement in transfection efficiency compared to the absence of fuel in a 2D culture, even surpassing the Lipofectamine 3000 commercial transfection agent (cationic lipid-mediated transfection). Swarms also demonstrated up to a 3.2-fold enhancement in the amount of material delivered in 3D spheroids compared to the absence of fuel. The successful transfection of 2D and 3D cell cultures using swarms of LBL PLGA NBs holds great potential for nucleic acid delivery in the context of bladder treatments.

JTD Keywords: Animals, Barrier, Cell line, tumor, Dna, Drug delivery, Drug-delivery, Enzyme catalysis, Gene delivery, Gene transfer techniques, Humans, Lactic acid, Mice, Nanobots, Nanoparticles, Pdna, Plasmids, Polyglycolic acid, Polylactic acid-polyglycolic acid copolymer, Swarming, Transfectio, Transfection, Urease, Urinary bladder neoplasms


Avalos-Padilla, Y, Fernandez-Busquets, X, (2024). Nanotherapeutics against malaria: A decade of advancements in experimental models Wiley Interdisciplinary Reviews-Nanomedicine And Nanobiotechnology 16, e1943

Malaria, caused by different species of protists of the genus Plasmodium, remains among the most common causes of death due to parasitic diseases worldwide, mainly for children aged under 5. One of the main obstacles to malaria eradication is the speed with which the pathogen evolves resistance to the drug schemes developed against it. For this reason, it remains urgent to find innovative therapeutic strategies offering sufficient specificity against the parasite to minimize resistance evolution and drug side effects. In this context, nanotechnology-based approaches are now being explored for their use as antimalarial drug delivery platforms due to the wide range of advantages and tuneable properties that they offer. However, major challenges remain to be addressed to provide a cost-efficient and targeted therapeutic strategy contributing to malaria eradication. The present work contains a systematic review of nanotechnology-based antimalarial drug delivery systems generated during the last 10 years. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease

JTD Keywords: Adjuvant system, Antimalarial activities, Antimalarial agent, Antimalarial drug, Antimalarial drugs, Antimalarials, Artemisinin resistance, Causes of death, Child, Controlled drug delivery, Diseases, Drug delivery system, Drug delivery systems, Drug interactions, Drug side-effects, Drug-delivery, Experimental modelling, Heparan-sulfate, Human, Humans, In-vitro, Malaria, Malaria vaccine, Mannosylated liposomes, Medical nanotechnology, Models, theoretical, Nanocarriers, Nanomedicine, Nanotechnology, Parasite-, Parasitics, Plasmodium, Plasmodium-falciparum malaria, Red-blood-cells, Targeted delivery, Targeted drug delivery, Theoretical model, Therapeutic strategy


Simo, C, Serra-Casablancas, M, Hortelao, AC, Di Carlo, V, Guallar-Garrido, S, Plaza-Garcia, S, Rabanal, RM, Ramos-Cabrer, P, Yaguee, B, Aguado, L, Bardia, L, Tosi, S, Gomez-Vallejo, V, Martin, A, Patino, T, Julian, E, Colombelli, J, Llop, J, Sanchez, S, (2024). Urease-powered nanobots for radionuclide bladder cancer therapy Nature Nanotechnology 19, 554-564

Bladder cancer treatment via intravesical drug administration achieves reasonable survival rates but suffers from low therapeutic efficacy. To address the latter, self-propelled nanoparticles or nanobots have been proposed, taking advantage of their enhanced diffusion and mixing capabilities in urine when compared with conventional drugs or passive nanoparticles. However, the translational capabilities of nanobots in treating bladder cancer are underexplored. Here, we tested radiolabelled mesoporous silica-based urease-powered nanobots in an orthotopic mouse model of bladder cancer. In vivo and ex vivo results demonstrated enhanced nanobot accumulation at the tumour site, with an eightfold increase revealed by positron emission tomography in vivo. Label-free optical contrast based on polarization-dependent scattered light-sheet microscopy of cleared bladders confirmed tumour penetration by nanobots ex vivo. Treating tumour-bearing mice with intravesically administered radio-iodinated nanobots for radionuclide therapy resulted in a tumour size reduction of about 90%, positioning nanobots as efficient delivery nanosystems for bladder cancer therapy.© 2024. The Author(s).

JTD Keywords: cell, drug-delivery, nanomotors, tissue, Bladder cancers, Cancer therapy, Diseases, Drug administration, Drug delivery, Enhanced diffusion, Enhanced mixing, Ex-vivo, In-vivo, Mammals, Nanobots, Nanoparticles, Nanosystems, Oncology, Positron emission tomography, Radioisotopes, Silica, Survival rate, Therapeutic efficacy, Tumor penetration, Tumors


Resina, L, Alemán, C, Ferreira, FC, Esteves, T, (2023). Protein-imprinted polymers: How far have "plastic antibodies" come? Biotechnology Advances 68, 108220

Antibodies are highly selective and sensitive, making them the gold standard for recognition affinity tools. However, their production cost is high and their downstream processing is time-consuming. Molecularly imprinted polymers (MIPs) are tailor-made by incorporating specific molecular recognition sites in their structure, thus translating into receptor-like activity mode of action. The interest in molecular imprinting technology, applied to biomacromolecules, has increased in the past decade. MIPs, produced using biomolecules as templates, commonly referred to as "plastic antibodies" or "artificial receptors", have been considered as suitable cheaper and easy to produce alternatives to antibodies. Research on MIPs, designed to recognize proteins or peptides is particularly important, with potential contributions towards biomedical applications, namely biosensors and targeted drug delivery systems. This mini review will cover recent advances on (bio)molecular imprinting technology, where proteins or peptides are targeted or mimicked for sensing and therapeutic applications. Polymerization methods are reviewed elsewhere, being out of the scope of this review. Template selection and immobilization approaches, monomers and applications will be discussed, highlighting possible drawbacks and gaps in research.Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved.

JTD Keywords: artificial antibodies, assay, biomimetics, biomolecules, biosensors, delivery, diagnostics, drug delivery, electrochemical detection, nanoparticles, receptors, science-and-technology, selective recognition, selective targeting, separation, templates, Artificial antibodies, Biomimetics, Biomolecules, Biosensors, Diagnostics, Drug delivery, Molecularly imprinted polymers, Nanoparticles, Selective targeting, Solid-phase synthesis


Almadhi, S, Forth, J, Rodriguez-Arco, L, Duro-Castano, A, Williams, I, Ruiz-Pérez, L, Battaglia, G, (2023). Bottom-Up Preparation of Phase-Separated Polymersomes Macromolecular Bioscience 23, 2300068

A bottom-up approach to fabricating monodisperse, two-component polymersomes that possess phase-separated ("patchy") chemical topology is presented. This approach is compared with already-existing top-down preparation methods for patchy polymer vesicles, such as film rehydration. These findings demonstrate a bottom-up, solvent-switch self-assembly approach that produces a high yield of nanoparticles of the target size, morphology, and surface topology for drug delivery applications, in this case patchy polymersomes of a diameter of ≈50 nm. In addition, an image processing algorithm to automatically calculate polymersome size distributions from transmission electron microscope images based on a series of pre-processing steps, image segmentation, and round object identification is presented.© 2023 Wiley-VCH GmbH.

JTD Keywords: assemblies, copolymers, evolution, membranes, micelles, ph, phase separation, polymersomes, rafts, self-assembly, size, vesicles, Cell biology, Drug delivery, Phase separation, Polymersomes, Self-assembly, Vesicles


Nong, J, Glassman, PM, Myerson, JW, Zuluaga-Ramirez, V, Rodriguez-Garcia, A, Mukalel, A, Omo-Lamai, S, Walsh, LR, Zamora, ME, Gong, XJ, Wang, ZC, Bhamidipati, K, Kiseleva, RY, Villa, CH, Greineder, CF, Kasner, SE, Weissman, D, Mitchell, MJ, Muro, S, Persidsky, Y, Brenner, JS, Muzykantov, VR, Marcos-Contreras, OA, (2023). Targeted Nanocarriers Co-Opting Pulmonary Intravascular Leukocytes for Drug Delivery to the Injured Brain Acs Nano 17, 13121-13136

Ex vivo-loaded white blood cells (WBC) can transfer cargo to pathological foci in the central nervous system (CNS). Here we tested affinity ligand driven in vivo loading of WBC in order to bypass the need for ex vivo WBC manipulation. We used a mouse model of acute brain inflammation caused by local injection of tumor necrosis factor alpha (TNF-α). We intravenously injected nanoparticles targeted to intercellular adhesion molecule 1 (anti-ICAM/NP). We found that (A) at 2 h, >20% of anti-ICAM/NP were localized to the lungs; (B) of the anti-ICAM/NP in the lungs >90% were associated with leukocytes; (C) at 6 and 22 h, anti-ICAM/NP pulmonary uptake decreased; (D) anti-ICAM/NP uptake in brain increased up to 5-fold in this time interval, concomitantly with migration of WBCs into the injured brain. Intravital microscopy confirmed transport of anti-ICAM/NP beyond the blood-brain barrier and flow cytometry demonstrated complete association of NP with WBC in the brain (98%). Dexamethasone-loaded anti-ICAM/liposomes abrogated brain edema in this model and promoted anti-inflammatory M2 polarization of macrophages in the brain. In vivo targeted loading of WBC in the intravascular pool may provide advantages of coopting WBC predisposed to natural rapid mobilization from the lungs to the brain, connected directly via conduit vessels.

JTD Keywords: drug delivery, icam-1, inflammation, lung injury, messenger-rna, migration, model, nanoparticles, neutrophils, pharmacokinetics, t-cells, white bloodcells, Adhesion molecules, Brain, Drug delivery, Inflammation, Nanoparticles, Pharmacokinetics, White blood cells


Placci, M, Giannotti, MI, Muro, S, (2023). Polymer-based drug delivery systems under investigation for enzyme replacement and other therapies of lysosomal storage disorders Advanced Drug Delivery Reviews 197, 114683

Lysosomes play a central role in cellular homeostasis and alterations in this compartment associate with many diseases. The most studied example is that of lysosomal storage disorders (LSDs), a group of 60 + maladies due to genetic mutations affecting lysosomal components, mostly enzymes. This leads to aberrant intracellular storage of macromolecules, altering normal cell function and causing multiorgan syndromes, often fatal within the first years of life. Several treatment modalities are available for a dozen LSDs, mostly consisting of enzyme replacement therapy (ERT) strategies. Yet, poor biodistribution to main targets such as the central nervous system, musculoskeletal tissue, and others, as well as generation of blocking antibodies and adverse effects hinder effective LSD treatment. Drug delivery systems are being studied to surmount these obstacles, including polymeric constructs and nanoparticles that consti-tute the focus of this article. We provide an overview of the formulations being tested, the diseases they aim to treat, and the results observed from respective in vitro and in vivo studies. We also discuss the advantages and disadvantages of these strategies, the remaining gaps of knowledge regarding their per-formance, and important items to consider for their clinical translation. Overall, polymeric nanocon-structs hold considerable promise to advance treatment for LSDs.(c) 2023 Elsevier B.V. All rights reserved.

JTD Keywords: cellular and animal models, enzyme replacement therapy, lysosomal storage disorders, nanoemulsions, nanoparticles, Beta-glucuronidase deficiency, Blood-brain-barrier, Cellular and animal models, Central-nervous-system, Drug delivery systems, Enzyme replacement therapy, Feline gm1 gangliosidosis, Human acid sphingomyelinase, Human alpha-galactosidase, Humans, Lysosomal storage diseases, Lysosomal storage disorders, Lysosomes, Mucopolysaccharidosis type-ii, Nanoemulsions, Nanoparticles, Neuronal ceroid-lipofuscinosis, Niemann-pick-disease, Pluripotent stem-cells, Polymer-based drug delivery systems, Polymers, Tissue distribution


Fraire, JC, Guix, M, Hortelao, AC, Ruiz-González, N, Bakenecker, AC, Ramezani, P, Hinnekens, C, Sauvage, F, De Smedt, SC, Braeckmans, K, Sánchez, S, (2023). Light-Triggered Mechanical Disruption of Extracellular Barriers by Swarms of Enzyme-Powered Nanomotors for Enhanced Delivery Acs Nano 17, 7180-7193

Targeted drug delivery depends on the ability of nanocarriers to reach the target site, which requires the penetration of different biological barriers. Penetration is usually low and slow because of passive diffusion and steric hindrance. Nanomotors (NMs) have been suggested as the next generation of nanocarriers in drug delivery due to their autonomous motion and associated mixing hydrodynamics, especially when acting collectively as a swarm. Here, we explore the concept of enzyme-powered NMs designed as such that they can exert disruptive mechanical forces upon laser irradiation. The urease-powered motion and swarm behavior improve translational movement compared to passive diffusion of state-of-the-art nanocarriers, while optically triggered vapor nanobubbles can destroy biological barriers and reduce steric hindrance. We show that these motors, named Swarm 1, collectively displace through a microchannel blocked with type 1 collagen protein fibers (barrier model), accumulate onto the fibers, and disrupt them completely upon laser irradiation. We evaluate the disruption of the microenvironment induced by these NMs (Swarm 1) by quantifying the efficiency by which a second type of fluorescent NMs (Swarm 2) can move through the cleared microchannel and be taken up by HeLa cells at the other side of the channel. Experiments showed that the delivery efficiency of Swarm 2 NMs in a clean path was increased 12-fold in the presence of urea as fuel compared to when no fuel was added. When the path was blocked with the collagen fibers, delivery efficiency dropped considerably and only depicted a 10-fold enhancement after pretreatment of the collagen-filled channel with Swarm 1 NMs and laser irradiation. The synergistic effect of active motion (chemically propelled) and mechanical disruption (light-triggered nanobubbles) of a biological barrier represents a clear advantage for the improvement of therapies which currently fail due to inadequate passage of drug delivery carriers through biological barriers.

JTD Keywords: drug delivery, enzyme catalysis, nanoparticles, swarming, vapor nanobubbles, Drug carriers, Drug delivery, Drug delivery systems, Enzyme catalysis, Hela cells, Humans, Nanomotors, Nanoparticles, Swarming, Vapor nanobubbles


Blanco-Fernandez, G, Blanco-Fernandez, B, Fernandez-Ferreiro, A, Otero-Espinar, FJ, (2023). Lipidic lyotropic liquid crystals: Insights on biomedical applications Advances In Colloid And Interface Science 313, 102867

Liquid crystals (LCs) possess unique physicochemical properties, translatable into a wide range of applications. To date, lipidic lyotropic LCs (LLCs) have been extensively explored in drug delivery and imaging owing to the capability to encapsulate and release payloads with different characteristics. The current landscape of lipidic LLCs in biomedical applications is provided in this review. Initially, the main properties, types, methods of fabrication and applications of LCs are showcased. Then, a comprehensive discussion of the main biomedical applications of lipidic LLCs accordingly to the application (drug and biomacromolecule delivery, tissue engi-neering and molecular imaging) and route of administration is examined. Further discussion of the main limi-tations and perspectives of lipidic LLCs in biomedical applications are also provided.Statement of significance: Liquid crystals (LCs) are those systems between a solid and liquid state that possess unique morphological and physicochemical properties, translatable into a wide range of biomedical applications. A short description of the properties of LCs, their types and manufacturing procedures is given to serve as a background to the topic. Then, the latest and most innovative research in the field of biomedicine is examined, specifically the areas of drug and biomacromolecule delivery, tissue engineering and molecular imaging. Finally, prospects of LCs in biomedicine are discussed to show future trends and perspectives that might be utilized. This article is an ampliation, improvement and actualization of our previous short forum article "Bringing lipidic lyotropic liquid crystal technology into biomedicine" published in TIPS.

JTD Keywords: drug delivery, glycerol monooleate, imaging, liquid crystals, Cancer, Drug delivery, Drug-delivery-systems, Glycerol monooleate, Imaging, In-situ, Liquid crystals, Nano-carriers, Nanoparticles, Phase-behavior, Stratum-corneum, Sustained-release, Tissue engineering, Vegetable-oil, Water


Anselmo, MS, Lantero, E, Avalos-Padilla, Y, Bouzón-Arnáiz, I, Ramírez, M, Postigo, A, Serrano, JL, Sierra, T, Hernández-Ainsa, S, Fernández-Busquets, X, (2023). Heparin-Coated Dendronized Hyperbranched Polymers for Antimalarial Targeted Delivery Acs Applied Polymer Materials 5, 381-390

The rampant evolution of resistance in Plasmodium to all existing antimalarial drugs calls for the development of improved therapeutic compounds and of adequate targeted delivery strategies for them. Loading antimalarials in nanocarriers specifically targeted to the parasite will contribute to the administration of lower overall doses, with reduced side effects for the patient, and of higher local amounts to parasitized cells for an increased lethality toward the pathogen. Here, we report the development of dendronized hyperbranched polymers (DHPs), with capacity for antimalarial loading, that are coated with heparin for their specific targeting to red blood cells parasitized by Plasmodium falciparum. The resulting DHP-heparin complexes exhibit the intrinsic antimalarial activity of heparin, with an IC50 of ca. 400 nM, added to its specific targeting to P. falciparum-infected (vs noninfected) erythrocytes. DHP-heparin nanocarriers represent a potentially interesting contribution to the limited family of structures described so far for the loading and targeted delivery of current and future antimalarial compounds.© 2022 The Authors. Published by American Chemical Society.

JTD Keywords: carriers, drug-delivery, efficacy, heparin, malaria, mosquito, nanocarriers, parasite, plasmodium, targeted drug delivery, Dendritic polymers, Red-blood-cells


Blanco-Fernandez, G, Blanco-Fernandez, B, Fernández-Ferreiro, A, Otero-Espinar, F, (2023). Bringing lipidic lyotropic liquid crystal technology into biomedicine Trends In Pharmacological Sciences 44, 7-10

Liquid crystals (LCs), discovered more than 130 years ago, are now emerging in the field of biomedicine. This article highlights the recent uses of lipid lyotropic LCs in therapeutics delivery, imaging, and tissue engineering and invites the scientific community to continue exploring the design of more complex LCs. © 2022 Elsevier Ltd

JTD Keywords: biomedicine, drug delivery, glycerol monooleate, imaging, tissue engineering, Biomedicine, Drug delivery, Glycerol monooleate, Imaging, tissue engineering, Lyotropic liquid crystals


Botet-Carreras, A, Marimon, MB, Millan-Solsona, R, Aubets, E, Ciudad, CJ, Noé, V, Montero, MT, Domènech, O, Borrell, JH, (2023). On the uptake of cationic liposomes by cells: From changes in elasticity to internalization Colloids And Surfaces B-Biointerfaces 221, 112968

In this study, we assessed the capacity of a previously reported engineered liposomal formulation, which had been tested against model membranes mimicking the lipid composition of the HeLa plasma membrane, to fuse and function as a nanocarrier in cells. We used atomic force microscopy to observe physicochemical changes on the cell surface and confocal microscopy to determine how the liposomes interact with cell membranes and released their load. In addition, we performed viability assays using methotrexate as an active drug to obtain proof of concept of the formulation´s capacity to function as a drug delivery-system. The interaction of engineered liposomes with living cells corroborates the information obtained using model membranes and supports the capacity of the engineered liposomal formulation to serve as a potential nanocarrier.Copyright © 2022 Elsevier B.V. All rights reserved.

JTD Keywords: atomic force microscopy, confocal microscopy, drug delivery system, filopodia, young ?s modulus, Atomic force microscopy, Confocal microscopy, Drug delivery system, Engineered liposomes, Filopodia, Young´s modulus


Molina, BG, Vasani, RB, Jarvis, KL, Armelin, E, Voelcker, NH, Aleman, C, (2022). Dual pH- and electro-responsive antibiotic-loaded polymeric platforms for effective bacterial detection and elimination Reactive & Functional Polymers 181, 105434

We describe a multi-tasking flexible system that is able to release a wide spectrum antibiotic (levofloxacin, LVX) under electrostimulation and act as a pH sensor for detecting bacterial infections. Combining anodic polymer-ization with plasma polymerization processes we engineered dual pH-and electro-responsive polymeric systems. Particularly, the manufactured devices consisted on a layer of poly(hydroxymethyl-3,4-ethylenedioxythiophene) (PHEDOT) loaded with the LVX antibiotic and coated with a plasma polymer layer of poly(acrylic acid) (PAA). The PHEDOT acted as conductive and electro-responsive agent, while the PAA provided pH responsiveness, changing from a compact globular conformation in acid environments to an expanded open coil conformation in alkaline environments. The assembly between the PHEDOT layer and the PAA coating affected the electro-chemical response of the former, becoming dependent on the pH detected by the latter. The conformational change experienced by the PAA layer as a function of the pH and the redox properties of PHEDOT were leveraged for the electrochemical detection of bacteria growth and for regulating the release of the LVX antibiotic, respectively. The effectiveness of the system as a stimulus-responsive antibiotic carrier and pH sensor was also investigated on strains of Escherichia coli and Streptococcus salivarius.

JTD Keywords: Conducting polymer, Delivery, Drug delivery, Electrostimulation, Levofloxacin, Ph sensor, Plasma, Poly(acrylic acid), Selective detection


Andrade, F, Roca-Melendres, MM, Llaguno, M, Hide, D, Raurell, I, Martell, M, Vijayakumar, S, Oliva, M, Schwartz, S, Duran-Lara, EF, Rafael, D, Abasolo, I, (2022). Smart and eco-friendly N-isopropylacrylamide and cellulose hydrogels as a safe dual-drug local cancer therapy approach Carbohydrate Polymers 295, 119859

Local cancer treatment by in situ injections of thermo-responsive hydrogels (HG) offers several advantages over conventional systemic anti-cancer treatments. In this work, a biodegradable and multicompartmental HG composed of N-isopropylacrylamide, cellulose, citric acid, and ceric ammonium nitrate was developed for the controlled release of hydrophilic (doxorubicin) and hydrophobic (niclosamide) drugs. The formulation presented ideal properties regarding thermo-responsiveness, rheological behavior, drug release profile, biocompatibility, and biological activity in colon and ovarian cancer cells. Cellulose was found to retard drugs release rate, being only 4 % of doxorubicin and 30 % of niclosamide released after 1 week. This low release was sufficient to cause cell death in both cell lines. Moreover, HG demonstrated a proper injectability, in situ prevalence, and safety profile in vivo. Overall, the HG properties, together with its natural and eco-friendly composition, create a safe and efficient platform for the local treatment of non-resectable tumors or tumors requiring pre-surgical adjuvant therapy.

JTD Keywords: biodegradable, cellulose, controlled-release formulation, drug delivery systems, hydrogel, thermo-responsiveness, Ammonium-nitrate, Biodegradable, Cancer treatment, Cellulose, Controlled-release formulation, Delivery, Drug delivery systems, Hydrogel, Reduce, Thermo-responsiveness


Middelhoek, KINA, Magdanz, V, Abelmann, L, Khalil, ISM, (2022). Drug-Loaded IRONSperm clusters: modeling, wireless actuation, and ultrasound imaging Biomedical Materials 17, 65001

Individual biohybrid microrobots have the potential to perform biomedical in vivo tasks such as remote-controlled drug and cell delivery and minimally invasive surgery. This work demonstrates the formation of biohybrid sperm-templated clusters under the influence of an external magnetic field and essential functionalities for wireless actuation and drug delivery. Ferromagnetic nanoparticles are electrostatically assembled around dead sperm cells, and the resulting nanoparticle-coated cells are magnetically assembled into three-dimensional biohybrid clusters. The aim of this clustering is threefold: First, to enable rolling locomotion on a nearby solid boundary using a rotating magnetic field; second, to allow for noninvasive localization; third, to load the cells inside the cluster with drugs for targeted therapy. A magneto-hydrodynamic model captures the rotational response of the clusters in a viscous fluid, and predicts an upper bound for their step-out frequency, which is independent of their volume or aspect ratio. Below the step-out frequency, the rolling velocity of the clusters increases nonlinearly with their perimeter and actuation frequency. During rolling locomotion, the clusters are localized using ultrasound images at a relatively large distance, which makes these biohybrid clusters promising for deep-tissue applications. Finally, we show that the estimated drug load scales with the number of cells in the cluster and can be retained for more than 10 h. The aggregation of microrobots enables them to collectively roll in a predictable way in response to an external rotating magnetic field, and enhances ultrasound detectability and drug loading capacity compared to the individual microrobots. The favorable features of biohybrid microrobot clusters place emphasis on the importance of the investigation and development of collective microrobots and their potential for in vivo applications.

JTD Keywords: drug delivery, magnetic actuation, microrobot aggregation, sperm, Driven, Drug delivery, Magnetic actuation, Magnetotactic bacteria, Microrobot aggregation, Microrobots, Motion, Movement, Propulsion, Sperm, Sphere, Ultrasound, Wall


Clua-Ferre, L, De Chiara, F, Rodriguez-Comas, J, Comelles, J, Martinez, E, Godeau, AL, Garcia-Alaman, A, Gasa, R, Ramon-Azcon, J, (2022). Collagen-Tannic Acid Spheroids for beta-Cell Encapsulation Fabricated Using a 3D Bioprinter Advanced Materials Technologies 7, 2101696

Type 1 Diabetes results from autoimmune response elicited against β-cell antigens. Nowadays, insulin injections remain the leading therapeutic option. However, injection treatment fails to emulate the highly dynamic insulin release that β-cells provide. 3D cell-laden microspheres have been proposed during the last years as a major platform for bioengineering insulin-secreting constructs for tissue graft implantation and a model for in vitro drug screening platforms. Current microsphere fabrication technologies have several drawbacks: the need for an oil phase containing surfactants, diameter inconsistency of the microspheres, and high time-consuming processes. These technologies have widely used alginate for its rapid gelation, high processability, and low cost. However, its low biocompatible properties do not provide effective cell attachment. This study proposes a high-throughput methodology using a 3D bioprinter that employs an ECM-like microenvironment for effective cell-laden microsphere production to overcome these limitations. Crosslinking the resulting microspheres with tannic acid prevents collagenase degradation and enhances spherical structural consistency while allowing the diffusion of nutrients and oxygen. The approach allows customization of microsphere diameter with extremely low variability. In conclusion, a novel bio-printing procedure is developed to fabricate large amounts of reproducible microspheres capable of secreting insulin in response to extracellular glucose stimuli.© 2022 The Authors. Advanced Materials Technologies published by Wiley‐VCH GmbH.

JTD Keywords: 3d bioprinter, beta-cell, biomaterial, collagen, encapsulation, mechanics, microspheres, survival, 3d bioprinter, ?-cell, Advanced material technologies, Biocompatibility, Cell encapsulations, Cells, Collagen, Cross-linking, Cytology, Drug delivery, Encapsulation, Fabrication, Flavonoids, Gelation, In-vitro, Insulin injections, Insulin release, Microspheres, Tannic acid, Tannins, Throughput, Tissue grafts, Type 1 diabetes, Β‐cell


Kim, YH, Dawson, JI, Oreffo, ROC, Tabata, Y, Kumar, D, Aparicio, C, Mutreja, I, (2022). Gelatin Methacryloyl Hydrogels for Musculoskeletal Tissue Regeneration Bioengineering (Basel) 9, 332

Musculoskeletal disorders are a significant burden on the global economy and public health. Hydrogels have significant potential for enhancing the repair of damaged and injured musculoskeletal tissues as cell or drug delivery systems. Hydrogels have unique physicochemical properties which make them promising platforms for controlling cell functions. Gelatin methacryloyl (GelMA) hydrogel in particular has been extensively investigated as a promising biomaterial due to its tuneable and beneficial properties and has been widely used in different biomedical applications. In this review, a detailed overview of GelMA synthesis, hydrogel design and applications in regenerative medicine is provided. After summarising recent progress in hydrogels more broadly, we highlight recent advances of GelMA hydrogels in the emerging fields of musculoskeletal drug delivery, involving therapeutic drugs (e.g., growth factors, antimicrobial molecules, immunomodulatory drugs and cells), delivery approaches (e.g., single-, dual-release system), and material design (e.g., addition of organic or inorganic materials, 3D printing). The review concludes with future perspectives and associated challenges for developing local drug delivery for musculoskeletal applications.

JTD Keywords: drug delivery, gelatin, gelma, hydrogel, Drug delivery, Gelatin, Gelma, Hydrogel, Musculoskeletal tissue


Raymond, Y, Johansson, L, Thorel, E, Ginebra, MP, (2022). Translation of three-dimensional printing of ceramics in bone tissue engineering and drug delivery Mrs Bulletin 47, 59-69

Kadkhodaie-Elyaderani, A, de Lama-Odría, MD, Rivas, M, Martínez-Rovira, I, Yousef, I, Puiggalí, J, del Valle, LJ, (2022). Medicated Scaffolds Prepared with Hydroxyapatite/Streptomycin Nanoparticles Encapsulated into Polylactide Microfibers International Journal Of Molecular Sciences 23, 1282

The preparation, characterization, and controlled release of hydroxyapatite (HAp) nanopar-ticles loaded with streptomycin (STR) was studied. These nanoparticles are highly appropriate for the treatment of bacterial infections and are also promising for the treatment of cancer cells. The analyses involved scanning electron microscopy, dynamic light scattering (DLS) and Z-potential measurements, as well as infrared spectroscopy and X-ray diffraction. Both amorphous (ACP) and crystalline (cHAp) hydroxyapatite nanoparticles were considered since they differ in their release behavior (faster and slower for amorphous and crystalline particles, respectively). The encapsulated nanoparticles were finally incorporated into biodegradable and biocompatible polylactide (PLA) scaf-folds. The STR load was carried out following different pathways during the synthesis/precipitation of the nanoparticles (i.e., nucleation steps) and also by simple adsorption once the nanoparticles were formed. The loaded nanoparticles were biocompatible according to the study of the cytotoxicity of extracts using different cell lines. FTIR microspectroscopy was also employed to evaluate the cytotoxic effect on cancer cell lines of nanoparticles internalized by endocytosis. The results were promising when amorphous nanoparticles were employed. The nanoparticles loaded with STR increased their size and changed their superficial negative charge to positive. The nanoparticles’ crystallinity decreased, with the consequence that their crystal sizes reduced, when STR was incorporated into their structure. STR maintained its antibacterial activity, although it was reduced during the adsorption into the nanoparticles formed. The STR release was faster from the amorphous ACP nanoparticles and slower from the crystalline cHAp nanoparticles. However, in both cases, the STR release was slower when incorporated in calcium and phosphate during the synthesis. The biocompatibility of these nanoparticles was assayed by two approximations. When extracts from the nanoparticles were evaluated in cultures of cell lines, no cytotoxic damage was observed at concen-trations of less than 10 mg/mL. This demonstrated their biocompatibility. Another experiment using FTIR microspectroscopy evaluated the cytotoxic effect of nanoparticles internalized by endocytosis in cancer cells. The results demonstrated slight damage to the biomacromolecules when the cells were treated with ACP nanoparticles. Both ACP and cHAp nanoparticles were efficiently encapsulated in PLA electrospun matrices, providing functionality and bioactive properties. © 2022 by the authors. Licensee MDPI, Basel, Switzerland.

JTD Keywords: antibiotics, antimicrobial activity, behavior, cytotoxicity, delivery, drug, drug delivery, hydroxyapatite nanoparticles, in-vitro, mechanisms, mitochondria, polylactide, release, streptomycin, Antimicrobial activity, Cancer stem-cells, Cytotoxicity, Drug delivery, Hydroxyapatite nanoparticles, Polylactide, Streptomycin


Boloix, A, Feiner-Gracia, N, Kober, M, Repetto, J, Pascarella, R, Soriano, A, Masanas, M, Segovia, N, Vargas-Nadal, G, Merlo-Mas, J, Danino, D, Abutbul-Ionita, I, Foradada, L, Roma, J, Cordoba, A, Sala, S, Toledo, JS, Gallego, S, Veciana, J, Albertazzi, L, Segura, MF, Ventosa, N, (2022). Engineering pH-Sensitive Stable Nanovesicles for Delivery of MicroRNA Therapeutics Small 18, 2101959

MicroRNAs (miRNAs) are small non-coding endogenous RNAs, which are attracting a growing interest as therapeutic molecules due to their central role in major diseases. However, the transformation of these biomolecules into drugs is limited due to their unstability in the bloodstream, caused by nucleases abundantly present in the blood, and poor capacity to enter cells. The conjugation of miRNAs to nanoparticles (NPs) could be an effective strategy for their clinical delivery. Herein, the engineering of non-liposomal lipid nanovesicles, named quatsomes (QS), for the delivery of miRNAs and other small RNAs into the cytosol of tumor cells, triggering a tumor-suppressive response is reported. The engineered pH-sensitive nanovesicles have controlled structure (unilamellar), size (<150 nm) and composition. These nanovesicles are colloidal stable (>24 weeks), and are prepared by a green, GMP compliant, and scalable one-step procedure, which are all unavoidable requirements for the arrival to the clinical practice of NP based miRNA therapeutics. Furthermore, QS protect miRNAs from RNAses and when injected intravenously, deliver them into liver, lung, and neuroblastoma xenografts tumors. These stable nanovesicles with tunable pH sensitiveness constitute an attractive platform for the efficient delivery of miRNAs and other small RNAs with therapeutic activity and their exploitation in the clinics.

JTD Keywords: cancer therapy, mirnas delivery, nanocarriers, nanovesicles, neuroblastoma, pediatric cancer, quatsomes, Biodistribution, Cancer therapy, Cell engineering, Cells, Cholesterol, Controlled drug delivery, Diseases, Dna, Dysregulated ph, Lipoplex, Microrna delivery, Mirnas delivery, Nanocarriers, Nanoparticles, Nanovesicle, Nanovesicles, Neuroblastoma, Neuroblastomas, Pediatric cancer, Ph sensitive, Ph sensors, Quatsome, Quatsomes, Rna, Sirna, Sirna delivery, Sirnas delivery, Small interfering rna, Small rna, Targeted drug delivery, Tumors, Vesicles


Duro-Castano, A, Rodríguez-Arco, L, Ruiz-Pérez, L, De Pace, C, Marchello, G, Noble-Jesus, C, Battaglia, G, (2021). One-Pot Synthesis of Oxidation-Sensitive Supramolecular Gels and Vesicles Biomacromolecules 22, 5052-5064

Polypeptide-based nanoparticles offer unique advantages from a nanomedicine perspective such as biocompatibility, biodegradability, and stimuli-responsive properties to (patho)physiological conditions. Conventionally, self-assembled polypeptide nanostructures are prepared by first synthesizing their constituent amphiphilic polypeptides followed by postpolymerization self-assembly. Herein, we describe the one-pot synthesis of oxidation-sensitive supramolecular micelles and vesicles. This was achieved by polymerization-induced self-assembly (PISA) of the N-carboxyanhydride (NCA) precursor of methionine using poly(ethylene oxide) as a stabilizing and hydrophilic block in dimethyl sulfoxide (DMSO). By adjusting the hydrophobic block length and concentration, we obtained a range of morphologies from spherical to wormlike micelles, to vesicles. Remarkably, the secondary structure of polypeptides greatly influenced the final morphology of the assemblies. Surprisingly, wormlike micellar morphologies were obtained for a wide range of methionine block lengths and solid contents, with spherical micelles restricted to very short hydrophobic lengths. Wormlike micelles further assembled into oxidation-sensitive, self-standing gels in the reaction pot. Both vesicles and wormlike micelles obtained using this method demonstrated to degrade under controlled oxidant conditions, which would expand their biomedical applications such as in sustained drug release or as cellular scaffolds in tissue engineering.

JTD Keywords: alpha-amino-acid, hydrogels, leuchs anhydrides, platform, polypeptides, transformation, triggered cargo release, Amino acids, Amphiphilics, Biocompatibility, Biodegradability, Block lengths, Controlled drug delivery, Dimethyl sulfoxide, Ethylene, Gels, Hydrophobicity, Medical nanotechnology, Methionine, Micelles, Morphology, One-pot synthesis, Organic solvents, Oxidation, Physiological condition, Polyethylene oxides, Post-polymerization, Ring-opening polymerization, Scaffolds (biology), Self assembly, Stimuli-responsive properties, Supramolecular chemistry, Supramolecular gels, Supramolecular micelles, Wormlike micelle


Chausse, V, Schieber, R, Raymond, Y, Ségry, B, Sabaté, R, Kolandaivelu, K, Ginebra, MP, Pegueroles, M, (2021). Solvent-cast direct-writing as a fabrication strategy for radiopaque stents Additive Manufacturing 48, 102392

Guasch-Girbau, A, Fernandez-Busquets, X, (2021). Review of the current landscape of the potential of nanotechnology for future malaria diagnosis, treatment, and vaccination strategies Pharmaceutics 13, 2189

Malaria eradication has for decades been on the global health agenda, but the causative agents of the disease, several species of the protist parasite Plasmodium, have evolved mechanisms to evade vaccine-induced immunity and to rapidly acquire resistance against all drugs entering clinical use. Because classical antimalarial approaches have consistently failed, new strategies must be explored. One of these is nanomedicine, the application of manipulation and fabrication technology in the range of molecular dimensions between 1 and 100 nm, to the development of new medical solutions. Here we review the current state of the art in malaria diagnosis, prevention, and therapy and how nanotechnology is already having an incipient impact in improving them. In the second half of this review, the next generation of antimalarial drugs currently in the clinical pipeline is presented, with a definition of these drugs’ target product profiles and an assessment of the potential role of nanotechnology in their development. Opinions extracted from interviews with experts in the fields of nanomedicine, clinical malaria, and the economic landscape of the disease are included to offer a wider scope of the current requirements to win the fight against malaria and of how nanoscience can contribute to achieve them. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.

JTD Keywords: antibody-bearing liposomes, antimalarial drugs, combination therapies, drug-delivery strategies, malaria diagnosis, malaria prophylaxis, malaria therapy, nanocarriers, nanomedicine, nanoparticles, nanotechnology, plasmodium, plasmodium-falciparum, red-blood-cells, targeted delivery, targeted drug delivery, vitro antimalarial activity, Antimalarial drugs, Isothermal amplification lamp, Malaria diagnosis, Malaria prophylaxis, Malaria therapy, Nanocarriers, Nanomedicine, Nanotechnology, Plasmodium, Targeted drug delivery


Rial-Hermida, MI, Rey-Rico, A, Blanco-Fernandez, B, Carballo-Pedrares, N, Byrne, EM, Mano, JF, (2021). Recent Progress on Polysaccharide-Based Hydrogels for Controlled Delivery of Therapeutic Biomolecules Acs Biomaterials Science & Engineering 7, 4102-4127

A plethora of applications using polysaccharides have been developed in recent years due to their availability as well as their frequent nontoxicity and biodegradability. These polymers are usually obtained from renewable sources or are byproducts of industrial processes, thus, their use is collaborative in waste management and shows promise for an enhanced sustainable circular economy. Regarding the development of novel delivery systems for biotherapeutics, the potential of polysaccharides is attractive for the previously mentioned properties and also for the possibility of chemical modification of their structures, their ability to form matrixes of diverse architectures and mechanical properties, as well as for their ability to maintain bioactivity following incorporation of the biomolecules into the matrix. Biotherapeutics, such as proteins, growth factors, gene vectors, enzymes, hormones, DNA/RNA, and antibodies are currently in use as major therapeutics in a wide range of pathologies. In the present review, we summarize recent progress in the development of polysaccharide-based hydrogels of diverse nature, alone or in combination with other polymers or drug delivery systems, which have been implemented in the delivery of biotherapeutics in the pharmaceutical and biomedical fields. © 2021 American Chemical Society.

JTD Keywords: biodegradable dextran hydrogels, biotherapeutics, bone morphogenetic protein-2, carrageenan-based hydrogels, chitosan-based hydrogels, controlled delivery, controlled-release, cross-linked hydrogels, growth-factor delivery, hydrogels, in-vitro characterization, polysaccharides, self-healing hydrogel, stimuli-responsiveness, tissue engineering, Antibodies, Bioactivity, Biodegradability, Biomedical fields, Biomolecules, Biotherapeutics, Chemical modification, Circular economy, Controlled delivery, Controlled drug delivery, Delivery systems, Drug delivery system, Functional polymers, Hyaluronic-acid hydrogels, Hydrogels, Industrial processs, Polysaccharides, Recent progress, Renewable sources, Stimuli-responsiveness, Targeted drug delivery, Tissue engineering, Waste management


Barbero-Castillo, A, Riefolo, F, Matera, C, Caldas-Martínez, S, Mateos-Aparicio, P, Weinert, JF, Garrido-Charles, A, Claro, E, Sanchez-Vives, MV, Gorostiza, P, (2021). Control of Brain State Transitions with a Photoswitchable Muscarinic Agonist Advanced Science 8, 2005027

The ability to control neural activity is essential for research not only in basic neuroscience, as spatiotemporal control of activity is a fundamental experimental tool, but also in clinical neurology for therapeutic brain interventions. Transcranial-magnetic, ultrasound, and alternating/direct current (AC/DC) stimulation are some available means of spatiotemporal controlled neuromodulation. There is also light-mediated control, such as optogenetics, which has revolutionized neuroscience research, yet its clinical translation is hampered by the need for gene manipulation. As a drug-based light-mediated control, the effect of a photoswitchable muscarinic agonist (Phthalimide-Azo-Iper (PAI)) on a brain network is evaluated in this study. First, the conditions to manipulate M2 muscarinic receptors with light in the experimental setup are determined. Next, physiological synchronous emergent cortical activity consisting of slow oscillations-as in slow wave sleep-is transformed into a higher frequency pattern in the cerebral cortex, both in vitro and in vivo, as a consequence of PAI activation with light. These results open the way to study cholinergic neuromodulation and to control spatiotemporal patterns of activity in different brain states, their transitions, and their links to cognition and behavior. The approach can be applied to different organisms and does not require genetic manipulation, which would make it translational to humans.

JTD Keywords: brain states, light-mediated control, muscarinic acetylcholine receptors, neuromodulation, Activation, Alternating/direct currents, Basal forebrain, Brain, Brain states, Clinical research, Clinical translation, Controlled drug delivery, Cortex, Forebrain cholinergic system, Genetic manipulations, Higher frequencies, Hz oscillation, Light‐, Light-mediated control, Mediated control, Muscarinic acetylcholine receptors, Muscarinic agonists, Muscarinic receptor, Neurology, Neuromodulation, Neurons, Noradrenergic modulation, Parvalbumin-positive interneurons, Photopharmacology, Receptor-binding, Slow, Spatiotemporal control, Spatiotemporal patterns


Abramov, A, Maiti, B, Keridou, I, Puiggalí, J, Reiser, O, Díaz, DD, (2021). A pH-Triggered Polymer Degradation or Drug Delivery System by Light-Mediated Cis/Trans Isomerization of o-Hydroxy Cinnamates Macromolecular Rapid Communications 42, 2100213

A new methodology for the pH-triggered degradation of polymers or for the release of drugs under visible light irradiation based on the cyclization of ortho-hydroxy-cinnamates (oHC) to coumarins is described. The key oHC structural motif can be readily incorporated into the rational design of novel photocleavable polymers via click chemistry. This main-chain moiety undergoes a fast photocleavage when irradiated with 455 nm light provided that a suitable base is added. A series of polyethylene glycol-alt-ortho-hydroxy cinnamate (polyethylene glycol (PEG)(n)-alt-oHC)-based polymers are synthesized and the time-dependent visible-light initiated cleavage of the photoactive monomer and polymer is investigated in solution by a variety of spectroscopic and chromatographic techniques. The photo-degradation behavior of the water-soluble poly(PEG(2000)-alt-oHC) is investigated within a broad pH range (pH = 2.1-11.8), demonstrating fast degradation at pH 11.8, while the stability of the polymer is greatly enhanced at pH 2.1. Moreover, the neat polymer shows long-term stability under daylight conditions, thus allowing its storage without special precautions. In addition, two water-soluble PEG-based drug-carrier molecules (mPEG(2000)-oHC-benzhydrol/phenol) are synthesized and used for drug delivery studies, monitoring the process by UV-vis spectroscopy in an ON/OFF intermittent manner.

JTD Keywords: coumarins, drug delivery, e/z-double bond isomerization, o-hydroxy cinnamates, polymer degradation, Aliphatic compounds, Antioxidant activity, Antitumor, Chromatographic techniques, Chromatography, Cis/trans isomerization, Controlled drug delivery, Coumarin derivatives, Coumarins, Drug delivery, Drug delivery system, E/z-double bond isomerization, Films, Hydrogels, Image enhancement, Light, Long term stability, O-hydroxy cinnamates, Particles, Photoactive monomers, Photodegradation, Polyethylene glycols, Polyethylenes, Polymer degradation, Responsive polymers, Salts, Structural motifs, Synthesis (chemical), Targeted drug delivery, Visible light photocatalysis, Visible-light irradiation


Mares, AG, Pacassoni, G, Marti, JS, Pujals, S, Albertazzi, L, (2021). Formulation of tunable size PLGA-PEG nanoparticles for drug delivery using microfluidic technology Plos One 16, e0251821

Amphiphilic block co-polymer nanoparticles are interesting candidates for drug delivery as a result of their unique properties such as the size, modularity, biocompatibility and drug loading capacity. They can be rapidly formulated in a nanoprecipitation process based on self-assembly, resulting in kinetically locked nanostructures. The control over this step allows us to obtain nanoparticles with tailor-made properties without modification of the co-polymer building blocks. Furthermore, a reproducible and controlled formulation supports better predictability of a batch effectiveness in preclinical tests. Herein, we compared the formulation of PLGA-PEG nanoparticles using the typical manual bulk mixing and a microfluidic chip-assisted nanoprecipitation. The particle size tunability and controllability in a hydrodynamic flow focusing device was demonstrated to be greater than in the manual dropwise addition method. We also analyzed particle size and encapsulation of fluorescent compounds, using the common bulk analysis and advanced microscopy techniques: Transmission Electron Microscopy and Total Internal Reflection Microscopy, to reveal the heterogeneities occurred in the formulated nanoparticles. Finally, we performed in vitro evaluation of obtained NPs using MCF-7 cell line. Our results show how the microfluidic formulation improves the fine control over the resulting nanoparticles, without compromising any appealing property of PLGA nanoparticle. The combination of microfluidic formulation with advanced analysis methods, looking at the single particle level, can improve the understanding of the NP properties, heterogeneities and performance.

JTD Keywords: controlled-release, doxorubicin, encapsulation, functional nanoparticles, nanoprecipitation, pharmacokinetics, polymeric nanoparticles, shape, surface-chemistry, Breast neoplasms, Drug carriers, Drug delivery systems, Female, Humans, In-vitro, Mcf-7 cells, Microfluidics, Nanoparticles, Polyesters, Polyethylene glycol-poly(lactide-co-glycolide), Polyethylene glycols, Polymers


Roki, N, Solomon, M, Casta, L, Bowers, J, Getts, RC, Muro, S, (2021). A method to improve quantitative radiotracing-based analysis of the in vivo biodistribution of drug carriers Bioeng Transl Med 6, e210208

© 2020 The Authors. Bioengineering & Translational Medicine published by Wiley Periodicals LLC on behalf of The American Institute of Chemical Engineers. Biodistribution studies are essential in drug carrier design and translation, and radiotracing provides a sensitive quantitation for this purpose. Yet, for biodegradable formulations, small amounts of free-label signal may arise prior to or immediately after injection in animal models, causing potentially confounding biodistribution results. In this study, we refined a method to overcome this obstacle. First, we verified free signal generation in animal samples and then, mimicking it in a controllable setting, we injected mice intravenously with a radiolabeled drug carrier formulation (125I-antibody/3DNA) containing a known amount of free radiolabel (125I), or free 125I alone as a control. Corrected biodistribution data were obtained by separating the free radiolabel from blood and organs postmortem, using trichloroacetic acid precipitation, and subtracting the confounding signal from each tissue measurement. Control free 125I-radiolabel was detected at ≥85% accuracy in blood and tissues, validating the method. It biodistributed very heterogeneously among organs (0.6–39 %ID/g), indicating that any free 125I generated in the body or present in an injected formulation cannot be simply corrected to the free-label fraction in the original preparation, but the free label must be empirically measured in each organ. Application of this method to the biodistribution of 125I-antibody/3DNA, including formulations directed to endothelial target ICAM-1, showed accurate classification of free 125I species in blood and tissues. In addition, this technique rendered data on the in vivo degradation of the traced agents over time. Thus, this is a valuable technique to obtain accurate measurements of biodistribution using 125I and possibly other radiotracers.

JTD Keywords: biodistribution data correction, degradation, drug delivery carriers, free label, in vivo biodistribution, radiotracing, trichloroacetic acid precipitation, Biodistribution data correction, Degradation, Drug delivery carriers, Free label, In vivo biodistribution, Radiotracing, Trichloroacetic acid precipitation


Biosca, A, Cabanach, P, Abdulkarim, M, Gumbleton, M, Gómez-Canela, C, Ramírez, M, Bouzón-Arnáiz, I, Avalos-Padilla, Y, Borros, S, Fernàndez-Busquets, X, (2021). Zwitterionic self-assembled nanoparticles as carriers for Plasmodium targeting in malaria oral treatment Journal Of Controlled Release 331, 364-375

© 2021 Elsevier B.V. The current decline in antimalarial drug efficacy due to the evolution of resistant Plasmodium strains calls for new strategies capable of improving the bioavailability of antimalarials, especially of those whose lipophilic character imparts them a low solubility in biological fluids. Here we have designed, synthesized and characterized amphiphilic zwitterionic block copolymers forming nanoparticles capable of penetrating the intestinal epithelium that can be used for oral administration. Poly(butyl methacrylate-co-morpholinoethyl sulfobetaine methacrylate) (PBMA-MESBMA)-based nanoparticles exhibited a specific targeting to Plasmodium falciparum-infected vs. parasite-free red blood cells (74.8%/0.8% respectively), which was maintained upon encapsulation of the lipophilic antimalarial drug curcumin (82.6%/0.3%). The in vitro efficacy of curcumin upon encapsulation was maintained relative to the free compound, with an IC50 around 5 μM. In vivo assays indicated a significantly increased curcumin concentration in the blood of mice one hour after being orally fed PBMA-MESBMA-curcumin in comparison to the administration of free drug (18.7 vs. 2.1 ng/ml, respectively). At longer times, however, plasma curcumin concentration equaled between free and encapsulated drug, which was reflected in similar in vivo antimalarial activities in Plasmodium yoelii yoelii-infected mice. Microscopic analysis in blood samples of fluorescently labeled PBMA-MESBMA revealed the presence of the polymer inside P. yoelii yoelii-parasitized erythrocytes one hour after oral administration to infected animals.

JTD Keywords: curcumin, drug delivery, malaria, pbma-mesbma, plasmodium, zwitterionic block copolymers, Curcumin, Drug delivery, Malaria, Pbma-mesbma, Plasmodium, Zwitterionic block copolymers


Ebrahimi, N, Bi, CH, Cappelleri, DJ, Ciuti, G, Conn, AT, Faivre, D, Habibi, N, Hosovsky, A, Iacovacci, V, Khalil, ISM, Magdanz, V, Misra, S, Pawashe, C, Rashidifar, R, Soto-Rodriguez, PED, Fekete, Z, Jafari, A, (2021). Magnetic Actuation Methods in Bio/Soft Robotics Advanced Functional Materials 31, 2005137

© 2020 Wiley-VCH GmbH In recent years, magnetism has gained an enormous amount of interest among researchers for actuating different sizes and types of bio/soft robots, which can be via an electromagnetic-coil system, or a system of moving permanent magnets. Different actuation strategies are used in robots with magnetic actuation having a number of advantages in possible realization of microscale robots such as bioinspired microrobots, tetherless microrobots, cellular microrobots, or even normal size soft robots such as electromagnetic soft robots and medical robots. This review provides a summary of recent research in magnetically actuated bio/soft robots, discussing fabrication processes and actuation methods together with relevant applications in biomedical area and discusses future prospects of this way of actuation for possible improvements in performance of different types of bio/soft robots.

JTD Keywords: capsule endoscope, controlled propulsion, conventional gastroscopy, digital microfluidics, guided capsule, liquid-metal, magnetic drug delivery, magnetic microrobots, magnetically guided capsule endoscopy, magnetotactic bacteria, nanoscribe ip-dip, navigation system, Gallium-indium egain, Magnetic bioinspired micromanipulation, Magnetic drug delivery, Magnetic microrobots, Magnetically guided capsule endoscopy, Magnetotactic bacteria


Seras-Franzoso, J, Diaz-Riascos, ZV, Corchero, JL, González, P, Garcia-Aranda, N, Mandaña, M, Riera, R, Boullosa, A, Mancilla, S, Grayston, A, Moltó-Abad, M, Garcia-Fruitós, E, Mendoza, R, Pintos-Morell, G, Albertazzi, L, Rosell, A, Casas, J, Villaverde, A, Schwartz, S, Abasolo, I, (2021). Extracellular vesicles from recombinant cell factories improve the activity and efficacy of enzymes defective in lysosomal storage disorders Journal Of Extracellular Vesicles 10, e12058

In the present study the use of extracellular vesicles (EVs) as vehicles for therapeutic enzymes in lysosomal storage disorders was explored. EVs were isolated from mammalian cells overexpressing alpha-galactosidase A (GLA) or N-sulfoglucosamine sulfohydrolase (SGSH) enzymes, defective in Fabry and Sanfilippo A diseases, respectively. Direct purification of EVs from cell supernatants was found to be a simple and efficient method to obtain highly active GLA and SGSH proteins, even after EV lyophilization. Likewise, EVs carrying GLA (EV-GLA) were rapidly uptaken and reached the lysosomes in cellular models of Fabry disease, restoring lysosomal functionality much more efficiently than the recombinant enzyme in clinical use. In vivo, EVs were well tolerated and distributed among all main organs, including the brain. DiR-labelled EVs were localized in brain parenchyma 1 h after intra-arterial (internal carotid artery) or intravenous (tail vein) administrations. Moreover, a single intravenous administration of EV-GLA was able to reduce globotriaosylceramide (Gb3) substrate levels in clinically relevant tissues, such kidneys and brain. Overall, our results demonstrate that EVs from cells overexpressing lysosomal enzymes act as natural protein delivery systems, improving the activity and the efficacy of the recombinant proteins and facilitating their access to organs neglected by conventional enzyme replacement therapies.

JTD Keywords: alpha?galactosidase a, alpha‐galactosidase a, drug delivery, enzyme replacement therapy, fabry disease, lysosomal storage disorders, n-sulfoglucosamine sulfohydrolase, n?sulfoglucosamine sulfohydrolase, n‐sulfoglucosamine sulfohydrolase, sanfilippo syndrome, Alpha-galactosidase a, Drug delivery, Enzyme replacement therapy, Fabry disease, Lysosomal storage disorders, N-sulfoglucosamine sulfohydrolase, Sanfilippo syndrome


Sola-Barrado, B., M. Leite, D., Scarpa, E., Duro-Castano, A., Battaglia, G., (2020). Combinatorial intracellular delivery screening of anticancer drugs Molecular Pharmaceutics 17, (12), 4709-4714

Conventional drug solubilization strategies limit the understanding of the full potential of poorly water-soluble drugs during drug screening. Here, we propose a screening approach in which poorly water-soluble drugs are entrapped in poly(2-(methacryloyloxyethyl phosphorylcholine)-poly(2-(diisopropylaminoethyl methacryate) (PMPC-PDPA) polymersomes (POs) to enhance drug solubility and facilitate intracellular delivery. By using a human pediatric glioma cell model, we demonstrated that PMPC-PDPA POs mediated intracellular delivery of cytotoxic and epigenetic drugs by receptor-mediated endocytosis. Additionally, when delivered in combination, drug-loaded PMPC-PDPA POs triggered both an enhanced drug efficacy and synergy compared to that of a conventional combinatorial screening. Hence, our comprehensive synergy analysis illustrates that our screening methodology, in which PMPC-PDPA POs are used for intracellular codelivery of drugs, allows us to identify potent synergistic profiles of anticancer drugs.

JTD Keywords: Combination therapy, Drug screening, Drug solubilization, Intracellular drug delivery, Polymeric nanoparticles, Synergy analysis


Duro-Castano, A., Moreira Leite, D., Forth, J., Deng, Y., Matias, D., Noble Jesus, C., Battaglia, G., (2020). Designing peptide nanoparticles for efficient brain delivery Advanced Drug Delivery Reviews 160, 52-77

The targeted delivery of therapeutic compounds to the brain is arguably the most significant open problem in drug delivery today. Nanoparticles (NPs) based on peptides and designed using the emerging principles of molecular engineering show enormous promise in overcoming many of the barriers to brain delivery faced by NPs made of more traditional materials. However, shortcomings in our understanding of peptide self-assembly and blood–brain barrier (BBB) transport mechanisms pose significant obstacles to progress in this area. In this review, we discuss recent work in engineering peptide nanocarriers for the delivery of therapeutic compounds to the brain: from synthesis, to self-assembly, to in vivo studies, as well as discussing in detail the biological hurdles that a nanoparticle must overcome to reach the brain.

JTD Keywords: Alzheimer's disease, Blood-brain barrier, Drug delivery, Glioma, Parkinson's disease, Peptides, Self-assembly, Transcytosis


Borgheti-Cardoso, L. N., Kooijmans, S. A. A., Gutiérrez Chamorro, L., Biosca, A., Lantero, E., Ramírez, M., Avalos-Padilla, Y., Crespo, I., Fernández, I., Fernandez-Becerra, C., del Portillo, H. A., Fernàndez-Busquets, X., (2020). Extracellular vesicles derived from Plasmodium-infected and non-infected red blood cells as targeted drug delivery vehicles International Journal of Pharmaceutics 587, 119627

Among several factors behind drug resistance evolution in malaria is the challenge of administering overall doses that are not toxic for the patient but that, locally, are sufficiently high to rapidly kill the parasites. Thus, a crucial antimalarial strategy is the development of drug delivery systems capable of targeting antimalarial compounds to Plasmodium with high specificity. In the present study, extracellular vesicles (EVs) have been evaluated as a drug delivery system for the treatment of malaria. EVs derived from naive red blood cells (RBCs) and from Plasmodium falciparum-infected RBCs (pRBCs) were isolated by ultrafiltration followed by size exclusion chromatography. Lipidomic characterization showed that there were no significant qualitative differences between the lipidomic profiles of pRBC-derived EVs (pRBC-EVs) and RBC-derived EVs (RBC-EVs). Both EVs were taken up by RBCs and pRBCs, although pRBC-EVs were more efficiently internalized than RBC-EVs, which suggested their potential use as drug delivery vehicles for these cells. When loaded into pRBC-EVs, the antimalarial drugs atovaquone and tafenoquine inhibited in vitro P. falciparum growth more efficiently than their free drug counterparts, indicating that pRBC-EVs can potentially increase the efficacy of several small hydrophobic drugs used for the treatment of malaria.

JTD Keywords: Antimalarial drugs, Drug delivery, Extracellular vesicles, Malaria, Plasmodium falciparum


De Matteis, Valeria, Rizzello, Loris, (2020). Noble metals and soft bio-inspired nanoparticles in retinal diseases treatment: A perspective Cells 9, (3), 679

We are witnessing an exponential increase in the use of different nanomaterials in a plethora of biomedical fields. We are all aware of how nanoparticles (NPs) have influenced and revolutionized the way we supply drugs or how to use them as therapeutic agents thanks to their tunable physico-chemical properties. However, there is still a niche of applications where NP have not yet been widely explored. This is the field of ocular delivery and NP-based therapy, which characterizes the topic of the current review. In particular, many efforts are being made to develop nanosystems capable of reaching deeper sections of the eye such as the retina. Particular attention will be given here to noble metal (gold and silver), and to polymeric nanoparticles, systems consisting of lipid bilayers such as liposomes or vesicles based on nonionic surfactant. We will report here the most relevant literature on the use of different types of NPs for an efficient delivery of drugs and bio-macromolecules to the eyes or as active therapeutic tools.

JTD Keywords: Bio-inspired NPs, Drug delivery, Noble metals NPs, Retinal diseases


Moghimiardekani, A., Molina, B. G., Enshaei, H., del Valle, L. J., Pérez-Madrigal, M. M., Estrany, F., Alemán, C., (2020). Semi-interpenetrated hydrogels-microfibers electroactive assemblies for release and real-time monitoring of drugs Macromolecular Bioscience 20, (7), 2000074

Simultaneous drug release and monitoring using a single polymeric platform represents a significant advance in the utilization of biomaterials for therapeutic use. Tracking drug release by real-time electrochemical detection using the same platform is a simple way to guide the dosage of the drug, improve the desired therapeutic effect, and reduce the adverse side effects. The platform developed in this work takes advantage of the flexibility and loading capacity of hydrogels, the mechanical strength of microfibers, and the capacity of conducting polymers to detect the redox properties of drugs. The engineered platform is prepared by assembling two spin-coated layers of poly-γ-glutamic acid hydrogel, loaded with poly(3,4-ethylenedioxythiophene) (PEDOT) microparticles, and separated by a electrospun layer of poly-ε-caprolactone microfibers. Loaded PEDOT microparticles are used as reaction nuclei for the polymerization of poly(hydroxymethyl-3,4-ethylenedioxythiophene) (PHMeDOT), that semi-interpenetrate the whole three layered system while forming a dense network of electrical conduction paths. After demonstrating its properties, the platform is loaded with levofloxacin and its release monitored externally by UV–vis spectroscopy and in situ by using the PHMeDOT network. In situ real-time electrochemical monitoring of the drug release from the engineered platform holds great promise for the development of multi-functional devices for advanced biomedical applications.

JTD Keywords: Biosensors, Conducting polymers, Drug delivery, Poly-γ-glutamic acid, Poly-ε-caprolactone


Llopis-Lorente, A., García-Fernández, A., Murillo-Cremaes, N., Hortelão, A. C., Patinño, T., Villalonga, R., Sancenón, F., Martínez-Máñer, R., Sánchez, S., (2019). Enzyme-powered gated mesoporous silica nanomotors for on-command intracellular payload delivery ACS Nano 13, (10), 12171-12183

The introduction of stimuli-responsive cargo release capabilities on self-propelled micro- and nanomotors holds enormous potential in a number of applications in the biomedical field. Herein, we report the preparation of mesoporous silica nanoparticles gated with pH-responsive supramolecular nanovalves and equipped with urease enzymes which act as chemical engines to power the nanomotors. The nanoparticles are loaded with different cargo molecules ([Ru(bpy)3]Cl2 (bpy = 2,2′-bipyridine) or doxorubicin), grafted with benzimidazole groups on the outer surface, and capped by the formation of inclusion complexes between benzimidazole and cyclodextrin-modified urease. The nanomotor exhibits enhanced Brownian motion in the presence of urea. Moreover, no cargo is released at neutral pH, even in the presence of the biofuel urea, due to the blockage of the pores by the bulky benzimidazole:cyclodextrin-urease caps. Cargo delivery is only triggered on-command at acidic pH due to the protonation of benzimidazole groups, the dethreading of the supramolecular nanovalves, and the subsequent uncapping of the nanoparticles. Studies with HeLa cells indicate that the presence of biofuel urea enhances nanoparticle internalization and both [Ru(bpy)3]Cl2 or doxorubicin intracellular release due to the acidity of lysosomal compartments. Gated enzyme-powered nanomotors shown here display some of the requirements for ideal drug delivery carriers such as the capacity to self-propel and the ability to “sense” the environment and deliver the payload on demand in response to predefined stimuli.

JTD Keywords: Controlled release, Drug delivery, Enzymatic catalysis, Gatekeepers, Nanocarriers, Nanomotors, Stimuli-responsive nanomaterials


Puiggalí-Jou, A., del Valle, L. J., Alemán, C., (2019). Drug delivery systems based on intrinsically conducting polymers Journal of Controlled Release 309, 244-264

This work provides an overview of the up to date research related to intrinsically conducting polymers (ICPs) and their function as novel drug delivery systems (DDSs). Drugs administrated to patients do not always reach the targeted organ, which may affect other tissues leading to undesired side-effects. To overcome these problems, DDSs are under development. Nowadays, it is possible to target the administration and, most importantly, to achieve a controlled drug dosage upon external stimuli. Particularly, the attention of this work focuses on the drug release upon electrical stimuli employing ICPs. These are well-known organic polymers with outstanding electrical properties similar to metals but also retaining some advantageous characteristics normally related to polymers, like mechanical stability and easiness of processing. Depending on the redox state, ICPs can incorporate or release anionic or cationic molecules on-demand. Besides, the releasing rate can be finely tuned by the type of electrical stimulation applied. Another interesting feature is that ICPs are capable to sense redox molecules such as dopamine, serotonin or ascorbic acid among others. Therefore, future prospects go towards the design of materials where the releasing rate could be self-adjusted in response to changes in the surrounding environment. This recompilation of ideas and projects provides a critic outline of ICPs synthesis progress related to their use as DDSs. Definitely, ICPs are a very promising branch of DDSs where the dose can be finely tuned by the exertion of an external stimulus, hence optimizing the repercussions of the drug and diminishing its side effects.

JTD Keywords: Controlled release, DDS, Drug delivery, Electrical stimuli, ICP, Intrinsically conducting polymers


Mestres, G., Fernandez-Yague, M. A., Pastorino, D., Montufar, E. B., Canal, C., Manzanares-Céspedes, M. C., Ginebra, M. P., (2019). In vivo efficiency of antimicrobial inorganic bone grafts in osteomyelitis treatments Materials Science and Engineering: C 97, 84-95

The purpose of the present work was to evaluate in vivo different antimicrobial therapies to eradicate osteomyelitis created in the femoral head of New Zealand rabbits. Five phosphate-based cements were evaluated: calcium phosphate cements (CPC) and calcium phosphate foams (CPF), both in their pristine form and loaded with doxycycline hyclate, and an intrinsic antimicrobial magnesium phosphate cement (MPC; not loaded with an antibiotic). The cements were implanted in a bone previously infected with Staphylococcus aureus to discern the effects of the type of antibiotic administration (systemic vs. local), porosity (microporosity, i.e. <5 μm vs. macroporosity, i.e. >5 μm) and type of antimicrobial mechanism (release of antibiotic vs. intrinsic antimicrobial activity) on the improvement of the health state of the infected animals. A new method was developed, with a more comprehensive composite score that integrates 5 parameters of bone infection, 4 parameters of bone structural integrity and 4 parameters of bone regeneration. This method was used to evaluate the health state of the infected animals, both before and after osteomyelitis treatment. The results showed that the composite score allows to discern statistically significant differences between treatments that individual evaluations were not able to identify. Despite none of the therapies completely eradicated the infection, it was observed that macroporous materials (CPF and CPFd, the latter loaded with doxycycline hyclate) and intrinsic antimicrobial MPC allowed a better containment of the osteomyelitis. This study provides novel insights to understand the effect of different antimicrobial therapies in vivo, and a promising comprehensive methodology to evaluate the health state of the animals was developed. We expect that the implementation of such methodology could improve the criteria to select a proper antimicrobial therapy.

JTD Keywords: Calcium phosphate cements, Calcium phosphate foams, Drug delivery, In vivo, Magnesium phosphate cements, Osteomyelitis


Biosca, A., Dirscherl, L., Moles, E., Imperial, S., Fernàndez-Busquets, X., (2019). An immunoPEGliposome for targeted antimalarial combination therapy at the nanoscale Pharmaceutics 11, (7), 341

Combination therapies, where two drugs acting through different mechanisms are administered simultaneously, are one of the most efficient approaches currently used to treat malaria infections. However, the different pharmacokinetic profiles often exhibited by the combined drugs tend to decrease treatment efficacy as the compounds are usually eliminated from the circulation at different rates. To circumvent this obstacle, we have engineered an immunoliposomal nanovector encapsulating hydrophilic and lipophilic compounds in its lumen and lipid bilayer, respectively. The antimalarial domiphen bromide has been encapsulated in the liposome membrane with good efficiency, although its high IC50 of ca. 1 μM for living parasites complicates its use as immunoliposomal therapy due to erythrocyte agglutination. The conjugation of antibodies against glycophorin A targeted the nanocarriers to Plasmodium-infected red blood cells and to gametocytes, the sole malaria parasite stage responsible for the transmission from the human to the mosquito vector. The antimalarials pyronaridine and atovaquone, which block the development of gametocytes, have been co-encapsulated in glycophorin A-targeted immunoliposomes. The co-immunoliposomized drugs have activities significantly higher than their free forms when tested in in vitro Plasmodium falciparum cultures: Pyronaridine and atovaquone concentrations that, when encapsulated in immunoliposomes, resulted in a 50% inhibition of parasite growth had no effect on the viability of the pathogen when used as free drugs.

JTD Keywords: Combination therapy, Immunoliposomes, Malaria, Nanomedicine, Nanotechnology, Plasmodium, Targeted drug delivery


Moles, E., Kavallaris, M., Fernàndez-Busquets, X., (2019). Modeling the distribution of diprotic basic drugs in liposomal systems: Perspectives on malaria nanotherapy Frontiers in Pharmacology 10, 1064

Understanding how polyprotic compounds distribute within liposome (LP) suspensions is of major importance to design effective drug delivery strategies. Advances in this research field led to the definition of LP-based active drug encapsulation methods driven by transmembrane pH gradients with evidenced efficacy in the management of cancer and infectious diseases. An accurate modeling of membrane-solution drug partitioning is also fundamental when designing drug delivery systems for poorly endocytic cells, such as red blood cells (RBCs), in which the delivered payloads rely mostly on the passive diffusion of drug molecules across the cell membrane. Several experimental models have been proposed so far to predict the partitioning of polyprotic basic/acid drugs in artificial membranes. Nevertheless, the definition of a model in which the membrane-solution partitioning of each individual drug microspecies is studied relative to each other is still a topic of ongoing research. We present here a novel experimental approach based on mathematical modeling of drug encapsulation efficiency (EE) data in liposomal systems by which microspecies-specific partition coefficients are reported as a function of pH and phospholipid compositions replicating the RBC membrane in a simple and highly translatable manner. This approach has been applied to the study of several diprotic basic antimalarials of major clinical importance (quinine, primaquine, tafenoquine, quinacrine, and chloroquine) describing their respective microspecies distribution in phosphatidylcholine-LP suspensions. Estimated EE data according to the model described here closely fitted experimental values with no significant differences obtained in 75% of all pH/lipid composition-dependent conditions assayed. Additional applications studied include modeling drug EE in LPs in response to transmembrane pH gradients and lipid bilayer asymmetric charge, conditions of potential interest reflected in our previously reported RBC-targeted antimalarial nanotherapeutics.

JTD Keywords: Distribution coefficient, Liposomal systems, Malaria therapy, Nanomedicine, Partition coefficient, PH-controlled drug encapsulation, Polyprotic drug, Targeted drug delivery


Samitier, Josep, Correia, A., (2019). Biomimetic Nanotechnology for Biomedical Applications (NanoBio&Med 2018) Biomimetics MDPI

Emerging nanobiotechnologies can offer solutions to the current and future challenges in medicine. By covering topics from regenerative medicine, tissue engineering, drug delivery, bionanofabrication, and molecular biorecognition, this Special Issue aims to provide an update on the trends in nanomedicine and drug delivery using biomimetic approaches, and the development of novel biologically inspired devices for the safe and effective diagnosis, prevention, and treatment of disease.

JTD Keywords: Bioinspired nanotechnologies, Bionanofabrication, Bio-nano measurement and microscopy, Nanomaterials for biological and medical applications, Nanoassemblies, Nanostructured surfaces, Drug delivery, Nanobioelectronics, Integrated systems/nanobiosensors, Nanotoxicology, Graphene-based applications


Muro, Silvia, (2018). Alterations in cellular processes involving vesicular trafficking and implications in drug delivery Biomimetics 3, (3), 19

Endocytosis and vesicular trafficking are cellular processes that regulate numerous functions required to sustain life. From a translational perspective, they offer avenues to improve the access of therapeutic drugs across cellular barriers that separate body compartments and into diseased cells. However, the fact that many factors have the potential to alter these routes, impacting our ability to effectively exploit them, is often overlooked. Altered vesicular transport may arise from the molecular defects underlying the pathological syndrome which we aim to treat, the activity of the drugs being used, or side effects derived from the drug carriers employed. In addition, most cellular models currently available do not properly reflect key physiological parameters of the biological environment in the body, hindering translational progress. This article offers a critical overview of these topics, discussing current achievements, limitations and future perspectives on the use of vesicular transport for drug delivery applications.

JTD Keywords: Cellular vesicles, Vesicle fusion, Fission and intracellular trafficking, Drug delivery systems and nanomedicines, Transcytosis and endocytosis of drugs carriers, Disease effects on vesicular trafficking, Drug effects on vesicular trafficking, Role of the biological environment


Hortelão, A. C., Patiño, T., Perez-Jiménez, A., Blanco, A., Sánchez, S., (2018). Enzyme-powered nanobots enhance anticancer drug delivery Advanced Functional Materials 28, 1705086

The use of enzyme catalysis to power micro- and nanomotors exploiting biocompatible fuels has opened new ventures for biomedical applications such as the active transport and delivery of specific drugs to the site of interest. Here, urease-powered nanomotors (nanobots) for doxorubicin (Dox) anticancer drug loading, release, and efficient delivery to cells are presented. These mesoporous silica-based core-shell nanobots are able to self-propel in ionic media, as confirmed by optical tracking and dynamic light scattering analysis. A four-fold increase in drug release is achieved by nanobots after 6 h compared to their passive counterparts. Furthermore, the use of Dox-loaded nanobots presents an enhanced anticancer efficiency toward HeLa cells, which arises from a synergistic effect of the enhanced drug release and the ammonia produced at high concentrations of urea substrate. A higher content of Dox inside HeLa cells is detected after 1, 4, 6, and 24 h incubation with active nanobots compared to passive Dox-loaded nanoparticles. The improvement in drug delivery efficiency achieved by enzyme-powered nanobots may hold potential toward their use in future biomedical applications such as the substrate-triggered release of drugs in target locations.

JTD Keywords: Drug delivery, Enzymatic catalysis, Nanobots, Nanomachines, Nanomotors


Martí Coma-Cros, E., Biosca, A., Marques, J., Carol, L., Urbán, P., Berenguer, D., Riera, M. C., Delves, M., Sinden, R. E., Valle-Delgado, J. J., Spanos, L., Siden-Kiamos, I., Pérez, P., Paaijmans, K., Rottmann, M., Manfredi, A., Ferruti, P., Ranucci, E., Fernàndez-Busquets, X., (2018). Polyamidoamine nanoparticles for the oral administration of antimalarial drugs Pharmaceutics 10, (4), 225

Current strategies for the mass administration of antimalarial drugs demand oral formulations to target the asexual Plasmodium stages in the peripheral bloodstream, whereas recommendations for future interventions stress the importance of also targeting the transmission stages of the parasite as it passes between humans and mosquitoes. Orally administered polyamidoamine (PAA) nanoparticles conjugated to chloroquine reached the blood circulation and cured Plasmodium yoelii-infected mice, slightly improving the activity of the free drug and inducing in the animals immunity against malaria. Liquid chromatography with tandem mass spectrometry analysis of affinity chromatography-purified PAA ligands suggested a high adhesiveness of PAAs to Plasmodium falciparum proteins, which might be the mechanism responsible for the preferential binding of PAAs to Plasmodium-infected erythrocytes vs. non-infected red blood cells. The weak antimalarial activity of some PAAs was found to operate through inhibition of parasite invasion, whereas the observed polymer intake by macrophages indicated a potential of PAAs for the treatment of certain coinfections such as Plasmodium and Leishmania. When fluorescein-labeled PAAs were fed to females of the malaria mosquito vectors Anopheles atroparvus and Anopheles gambiae, persistent fluorescence was observed in the midgut and in other insect’s tissues. These results present PAAs as a versatile platform for the encapsulation of orally administered antimalarial drugs and for direct administration of antimalarials to mosquitoes, targeting mosquito stages of Plasmodium.

JTD Keywords: Anopheles, Antimalarial drugs, Malaria, Mosquitoes, Nanomedicine, Nanotechnology, Plasmodium, Polyamidoamines, Polymers, Targeted drug delivery


Borgheti-Cardoso, L.N., Fernàndez-Busquets, X., (2018). Turning Plasmodium survival strategies against itself Future Medicinal Chemistry 10, (19), 2245-2248

Duro-Castano, Aroa, Nebot, Vicent J., Niño-Pariente, Amaya, Armiñán, Ana, Arroyo-Crespo, Juan J., Paul, Alison, Feiner-Gracia, Natalia, Albertazzi, Lorenzo, Vicent, María J., (2017). Capturing “extraordinary” soft-assembled charge-like polypeptides as a strategy for nanocarrier design Advanced Materials 29, (39), 1702888

The rational design of nanomedicines is a challenging task given the complex architectures required for the construction of nanosized carriers with embedded therapeutic properties and the complex interface of these materials with the biological environment. Herein, an unexpected charge-like attraction mechanism of self-assembly for star-shaped polyglutamates in nonsalty aqueous solutions is identified, which matches the ubiquitous “ordinary–extraordinary” phenomenon previously described by physicists. For the first time, a bottom-up methodology for the stabilization of these nanosized soft-assembled star-shaped polyglutamates is also described, enabling the translation of theoretical research into nanomaterials with applicability within the drug-delivery field. Covalent capture of these labile assemblies provides access to unprecedented architectures to be used as nanocarriers. The enhanced in vitro and in vivo properties of these novel nanoconstructs as drug-delivery systems highlight the potential of this approach for tumor-localized as well as lymphotropic delivery.

JTD Keywords: Charge-like, Drug delivery, Polymer therapeutics, Polypeptides, Self-assembly


Stanton, Morgan M., Sánchez, Samuel, (2017). Pushing bacterial biohybrids to in vivo applications Trends in Biotechnology , 35, (10), 910-913

Bacterial biohybrids use the energy of bacteria to manipulate synthetic materials with the goal of solving biomedical problems at the micro- and nanoscale. We explore current in vitro studies of bacterial biohybrids, the first attempts at in vivo biohybrid research, and problems to be addressed for the future.

JTD Keywords: Bacteria, Biohybrid, Microswimmers, Micromotors, Drug delivery


Moles, E., Galiano, S., Gomes, A., Quiliano, M., Teixeira, C., Aldana, I., Gomes, P., Fernàndez-Busquets, X., (2017). ImmunoPEGliposomes for the targeted delivery of novel lipophilic drugs to red blood cells in a falciparum malaria murine model Biomaterials 145, 178-191

Most drugs currently entering the clinical pipeline for severe malaria therapeutics are of lipophilic nature, with a relatively poor solubility in plasma and large biodistribution volumes. Low amounts of these compounds do consequently accumulate in circulating Plasmodium-infected red blood cells, exhibiting limited antiparasitic activity. These drawbacks can in principle be satisfactorily dealt with by stably encapsulating drugs in targeted nanocarriers. Here this approach has been adapted for its use in immunocompetent mice infected by the Plasmodium yoelii 17XL lethal strain, selected as a model for human blood infections by Plasmodium falciparum. Using immunoliposomes targeted against a surface protein characteristic of the murine erythroid lineage, the protocol has been applied to two novel antimalarial lipophilic drug candidates, an aminoquinoline and an aminoalcohol. Large encapsulation yields of >90% were obtained using a citrate-buffered pH gradient method and the resulting immunoliposomes reached in vivo erythrocyte targeting and retention efficacies of >80%. In P. yoelii-infected mice, the immunoliposomized aminoquinoline succeeded in decreasing blood parasitemia from severe to uncomplicated malaria parasite densities (i.e. from ≥25% to ca. 5%), whereas the same amount of drug encapsulated in non-targeted liposomes had no significant effect on parasite growth. Pharmacokinetic analysis indicated that this good performance was obtained with a rapid clearance of immunoliposomes from the circulation (blood half-life of ca. 2 h), suggesting a potential for improvement of the proposed model.

JTD Keywords: Immunoliposomes, Malaria, Nanomedicine, Plasmodium falciparum, Plasmodium yoelii 17XL, Targeted drug delivery


Marques, J., Valle-Delgado, J. J., Urbán, P., Baró, E., Prohens, R., Mayor, A., Cisteró, P., Delves, M., Sinden, R. E., Grandfils, C., de Paz, J. L., García-Salcedo, J. A., Fernàndez-Busquets, X., (2017). Adaptation of targeted nanocarriers to changing requirements in antimalarial drug delivery Nanomedicine: Nanotechnology, Biology, and Medicine 13, (2), 515-525

The adaptation of existing antimalarial nanocarriers to new Plasmodium stages, drugs, targeting molecules, or encapsulating structures is a strategy that can provide new nanotechnology-based, cost-efficient therapies against malaria. We have explored the modification of different liposome prototypes that had been developed in our group for the targeted delivery of antimalarial drugs to Plasmodium-infected red blood cells (pRBCs). These new models include: (i) immunoliposome-mediated release of new lipid-based antimalarials; (ii) liposomes targeted to pRBCs with covalently linked heparin to reduce anticoagulation risks; (iii) adaptation of heparin to pRBC targeting of chitosan nanoparticles; (iv) use of heparin for the targeting of Plasmodium stages in the mosquito vector; and (v) use of the non-anticoagulant glycosaminoglycan chondroitin 4-sulfate as a heparin surrogate for pRBC targeting. The results presented indicate that the tuning of existing nanovessels to new malaria-related targets is a valid low-cost alternative to the de novo development of targeted nanosystems.

JTD Keywords: Glycosaminoglycans, Malaria, Nanomedicine, Plasmodium, Targeted drug delivery


Aláez-Versón, C. R., Lantero, E., Fernàndez-Busquets, X., (2017). Heparin: New life for an old drug Nanomedicine 12, (14), 1727-1744

Heparin is one of the oldest drugs, which nevertheless remains in widespread clinical use as an inhibitor of blood coagulation. The history of its identification a century ago unfolded amid one of the most fascinating scientific controversies turning around the distribution of credit for its discovery. The composition, purification and structure-function relationship of this naturally occurring glycosaminoglycan regarding its classical role as anticoagulant will be dealt with before proceeding to discuss its therapeutic potential in, among other, inflammatory and infectious disease, cancer treatment, cystic fibrosis and Alzheimer's disease. The first bibliographic reference hit using the words 'nanomedicine' and 'heparin' is as recent as 2008. Since then, nanomedical applications of heparin have experienced an exponential growth that will be discussed in detail, with particular emphasis on its antimalarial activity. Some of the most intriguing potential applications of heparin nanomedicines will be exposed, such as those contemplating the delivery of drugs to the mosquito stages of malaria parasites.

JTD Keywords: Anopheles, Antimalarial drugs, Heparin, Malaria, Mosquitoes, Nanomedicine, Nanotechnology, Plasmodium, Targeted drug delivery


Ma, Xing, Sánchez, Samuel, (2017). Self-propelling micro-nanorobots: challenges and future perspectives in nanomedicine Nanomedicine 12, (12), 1363-1367

Moles, E., Moll, K., Ch'ng, J. H., Parini, P., Wahlgren, M., Fernàndez-Busquets, X., (2016). Development of drug-loaded immunoliposomes for the selective targeting and elimination of rosetting Plasmodium falciparum-infected red blood cells Journal of Controlled Release 241, 57-67

Parasite proteins exported to the surface of Plasmodium falciparum-parasitized red blood cells (pRBCs) have a major role in severe malaria clinical manifestation, where pRBC cytoadhesion and rosetting processes have been strongly linked with microvascular sequestration while avoiding both spleen filtration and immune surveillance. The parasite-derived and pRBC surface-exposed PfEMP1 protein has been identified as one of the responsible elements for rosetting and, therefore, considered as a promising vaccine candidate for the generation of rosette-disrupting antibodies against severe malaria. However, the potential role of anti-rosetting antibodies as targeting molecules for the functionalization of antimalarial drug-loaded nanovectors has never been studied. Our manuscript presents a proof-of-concept study where the activity of an immunoliposomal vehicle with a dual performance capable of specifically recognizing and disrupting rosettes while simultaneously eliminating those pRBCs forming them has been assayed in vitro. A polyclonal antibody against the NTS-DBL1α N-terminal domain of a rosetting PfEMP1 variant has been selected as targeting molecule and lumefantrine as the antimalarial payload. After 30 min incubation with 2 μM encapsulated drug, a 70% growth inhibition for all parasitic forms in culture (IC50: 414 nM) and a reduction in ca. 60% of those pRBCs with a rosetting phenotype (IC50: 747 nM) were achieved. This immunoliposomal approach represents an innovative combination therapy for the improvement of severe malaria therapeutics having a broader spectrum of activity than either anti-rosetting antibodies or free drugs on their own.

JTD Keywords: Combination therapy, Immunoliposomes, Malaria, Nanomedicine, Rosetting, Targeted drug delivery


Fernàndez-Busquets, X., (2016). Novel strategies for Plasmodium-targeted drug delivery Expert Opinion on Drug Delivery , 13, (7), 919-922

Moles, E., Urbán, P., Jiménez-Díaz, M. B., Viera-Morilla, S., Angulo-Barturen, I., Busquets, M. A., Fernàndez-Busquets, X., (2015). Immunoliposome-mediated drug delivery to Plasmodium-infected and non-infected red blood cells as a dual therapeutic/prophylactic antimalarial strategy Journal of Controlled Release 210, 217-229

One of the most important factors behind resistance evolution in malaria is the failure to deliver sufficiently high amounts of drugs to early stages of Plasmodium-infected red blood cells (pRBCs). Despite having been considered for decades as a promising approach, the delivery of antimalarials encapsulated in immunoliposomes targeted to pRBCs has not progressed towards clinical applications, whereas in vitro assays rarely reach drug efficacy improvements above 10-fold. Here we show that encapsulation efficiencies reaching >96% are achieved for the weak basic drugs chloroquine (CQ) and primaquine using the pH gradient loading method in liposomes containing neutral saturated phospholipids. Targeting antibodies are best conjugated through their primary amino groups, adjusting chemical crosslinker concentration to retain significant antigen recognition. Antigens from non-parasitized RBCs have also been considered as targets for the delivery to the cell of drugs not affecting the erythrocytic metabolism. Using this strategy, we have achieved unprecedented complete nanocarrier targeting to early intraerythrocytic stages of the malaria parasite for which there is a lack of specific extracellular molecular tags. Immunoliposomes studded with monoclonal antibodies raised against the erythrocyte surface protein glycophorin A were capable of targeting 100% RBCs and pRBCs at the low concentration of 0.5 μM total lipid in the culture, with >95% of added liposomes retained on cell surfaces. When exposed for only 15 min to Plasmodium falciparum in vitro cultures of early stages, free CQ had no significant effect on the viability of the parasite up to 200 nM, whereas immunoliposomal 50 nM CQ completely arrested its growth. In vivo assays in mice showed that immunoliposomes cleared the pathogen below detectable levels at a CQ dose of 0.5 mg/kg, whereas free CQ administered at 1.75 mg/kg was, at most, 40-fold less efficient. Our data suggest that this significant improvement is in part due to a prophylactic effect of CQ found by the pathogen in its host cell right at the very moment of invasion.

JTD Keywords: Immunoliposomes, Malaria, Nanomedicine, Plasmodium, Targeted drug delivery


Moles, E., Fernàndez-Busquets, X., (2015). Loading antimalarial drugs into noninfected red blood cells: An undesirable roommate for Plasmodium Future Medicinal Chemistry 7, (7), 837-840

The malaria parasite, Plasmodium spp., is a delicate unicellular organism unable to survive in free form for more than a couple of minutes in the bloodstream. Upon injection in a human by its Anopheles mosquito vector, Plasmodium sporozoites pass through the liver with the aim of invading hepatocytes. Those which succeed spend inside their host cell a recovery time before replicating and entering the blood circulation as fragile merozoites, although their exposure to host defenses is extraordinarily short. Quick invasion of red blood cells (RBCs) in a process lasting just a few minutes allows the parasite to escape immune system surveillance. For most of its erythrocytic cycle the pathogen feeds mainly on hemoglobin as it progresses from the early blood stages, termed rings, to the late forms trophozoites and schizonts. Early stages are ideal targets for antimalarial therapies because drugs delivered to them would have a longer time to kill the parasite before it completes its development. However, only 6 h after invasion does the permeability of the infected erythrocyte to anions and small nonelectrolytes, including some drugs, start to increase as the parasite matures [1]. During this maturation process the parasite hydrolyzes hemoglobin in a digestive vacuole, which is the target of many amphiphilic drugs that freely cross the RBC membrane and accumulate intracellularly. As a result, most antimalarials start affecting the infected cell relatively late in the intraerythrocytic parasite life cycle, when their effect is probably often too short to be lethal to Plasmodium.

JTD Keywords: Malaria, Nanomedicine, Plasmodium, Red blood cell, Targeted drug delivery


Fernàndez-Busquets, X., (2014). Toy kit against malaria: Magic bullets, LEGO, Trojan horses and Russian dolls Therapeutic Delivery , 5, (10), 1049-1052

Movellan, J., Urbán, P., Moles, E., de la Fuente, J. M., Sierra, T., Serrano, J. L., Fernàndez-Busquets, X., (2014). Amphiphilic dendritic derivatives as nanocarriers for the targeted delivery of antimalarial drugs Biomaterials 35, (27), 7940-7950

It can be foreseen that in a future scenario of malaria eradication, a varied armamentarium will be required, including strategies for the targeted administration of antimalarial compounds. The development of nanovectors capable of encapsulating drugs and of delivering them to Plasmodium-infected cells with high specificity and efficacy and at an affordable cost is of particular interest. With this objective, dendritic derivatives based on 2,2-bis(hydroxymethyl)propionic acid (bis-MPA) and Pluronic® polymers have been herein explored. Four different dendritic derivatives have been tested for their capacity to encapsulate the antimalarial drugs chloroquine (CQ) and primaquine (PQ), their specific targeting to Plasmodium-infected red blood cells (pRBCs), and their antimalarial activity in vitro against the human pathogen Plasmodium falciparum and in vivo against the rodent malaria species Plasmodium yoelii. The results obtained have allowed the identification of two dendritic derivatives exhibiting specific targeting to pRBCs vs. non-infected RBCs, which reduce the in vitro IC50 of CQ and PQ by ca. 3- and 4-fold down to 4.0 nm and 1.1 μm, respectively. This work on the application of dendritic derivatives to antimalarial targeted drug delivery opens the way for the use of this new type of chemicals in future malaria eradication programs.

JTD Keywords: Antimalarial targeted drug delivery, Dendrimers, Malaria, Nanomedicine, Plasmodium, Polymeric nanoparticles


Urbán, P., Valle-Delgado, J. J., Mauro, N., Marques, J., Manfredi, A., Rottmann, M., Ranucci, E., Ferruti, P., Fernàndez-Busquets, X., (2014). Use of poly(amidoamine) drug conjugates for the delivery of antimalarials to Plasmodium Journal of Controlled Release 177, (1), 84-95

Current malaria therapeutics demands strategies able to selectively deliver drugs to Plasmodium-infected red blood cells (pRBCs) in order to limit the appearance of parasite resistance. Here, the poly(amidoamines) AGMA1 and ISA23 have been explored for the delivery of antimalarial drugs to pRBCs. AGMA1 has antimalarial activity per se as shown by its inhibition of the in vitrogrowth of Plasmodium falciparum, with an IC50 of 13.7 μM. Fluorescence-assisted cell sorting data and confocal fluorescence microscopy and transmission electron microscopy images indicate that both polymers exhibit preferential binding to and internalization into pRBCs versus RBCs, and subcellular targeting to the parasite itself in widely diverging species such as P. falciparum and Plasmodium yoelii, infecting humans and mice, respectively. AGMA1 and ISA23 polymers with hydrodynamic radii around 7 nm show a high loading capacity for the antimalarial drugs primaquine and chloroquine, with the final conjugate containing from 14.2% to 32.9% (w/w) active principle. Intraperitoneal administration of 0.8 mg/kg chloroquine as either AGMA1 or ISA23 salts cured P. yoelii–infected mice, whereas control animals treated with twice as much free drug did not survive. These polymers combining into a single chemical structure drug carrying capacity, low unspecific toxicity, high biodegradability and selective internalization into pRBCs, but not in healthy erythrocytes for human and rodent malarias, may be regarded as promising candidates deserving to enter the antimalarial therapeutic arena.

JTD Keywords: Malaria, Nanomedicine, Plasmodium, Polyamidoamines, Polymer-drug carriers, Targeted drug delivery


Marques, J., Moles, E., Urbán, P., Prohens, R., Busquets, M. A., Sevrin, C., Grandfils, C., Fernàndez-Busquets, X., (2014). Application of heparin as a dual agent with antimalarial and liposome targeting activities toward Plasmodium-infected red blood cells Nanomedicine: Nanotechnology, Biology, and Medicine 10, (8), 1719-1728

Heparin had been demonstrated to have antimalarial activity and specific binding affinity for Plasmodium-infected red blood cells (pRBCs) vs. non-infected erythrocytes. Here we have explored if both properties could be joined into a drug delivery strategy where heparin would have a dual role as antimalarial and as a targeting element of drug-loaded nanoparticles. Confocal fluorescence and transmission electron microscopy data show that after 30. min of being added to living pRBCs fluorescein-labeled heparin colocalizes with the intracellular parasites. Heparin electrostatically adsorbed onto positively charged liposomes containing the cationic lipid 1,2-dioleoyl-3-trimethylammonium-propane and loaded with the antimalarial drug primaquine was capable of increasing three-fold the activity of encapsulated drug in Plasmodium falciparum cultures. At concentrations below those inducing anticoagulation of mouse blood in vivo, parasiticidal activity was found to be the additive result of the separate activities of free heparin as antimalarial and of liposome-bound heparin as targeting element for encapsulated primaquine. From the Clinical Editor: Malaria remains an enormous global public health concern. In this study, a novel functionalized heparin formulation used as drug delivery agent for primaquine was demonstrated to result in threefold increased drug activity in cell cultures, and in a murine model it was able to provide these benefits in concentrations below what would be required for anticoagulation. Further studies are needed determine if this approach is applicable in the human disease as well.

JTD Keywords: Heparin, Liposomes, Malaria, Plasmodium, Targeted drug delivery, Heparin, Malaria, Plasmodium, Red blood cell, Targeted drug delivery, Liposomes, 1,2 dioleoyl 3 trimethylammoniopropane, fluorescein, heparin, liposome, nanoparticle, primaquine, adsorption, animal experiment, anticoagulation, antimalarial activity, Article, binding affinity, confocal microscopy, controlled study, drug targeting, encapsulation, erythrocyte, female, fluorescence microscopy, human, human cell, in vivo study, liposomal delivery, mouse, nonhuman, Plasmodium falciparum, transmission electron microscopy


Urbán, P., Fernàndez-Busquets, X., (2014). Nanomedicine against malaria Current Medicinal Chemistry , 21, (5), 605-629

Malaria is arguably one of the main medical concerns worldwide because of the numbers of people affected, the severity of the disease and the complexity of the life cycle of its causative agent, the protist Plasmodium sp. The clinical, social and economic burden of malaria has led for the last 100 years to several waves of serious efforts to reach its control and eventual eradication, without success to this day. With the advent of nanoscience, renewed hopes have appeared of finally obtaining the long sought-after magic bullet against malaria in the form of a nanovector for the targeted delivery of antimalarial drugs exclusively to Plasmodium-infected cells. Different types of encapsulating structure, targeting molecule, and antimalarial compound will be discussed for the assembly of Trojan horse nanocapsules capable of targeting with complete specificity diseased cells and of delivering inside them their antimalarial cargo with the objective of eliminating the parasite with a single dose. Nanotechnology can also be applied to the discovery of new antimalarials through single-molecule manipulation approaches for the identification of novel drugs targeting essential molecular components of the parasite. Finally, methods for the diagnosis of malaria can benefit from nanotools applied to the design of microfluidic-based devices for the accurate identification of the parasite's strain, its precise infective load, and the relative content of the different stages of its life cycle, whose knowledge is essential for the administration of adequate therapies. The benefits and drawbacks of these nanosystems will be considered in different possible scenarios, including cost-related issues that might be hampering the development of nanotechnology-based medicines against malaria with the dubious argument that they are too expensive to be used in developing areas.

JTD Keywords: Dendrimers, Liposomes, Malaria diagnosis, Nanobiosensors, Nanoparticles, Plasmodium, Polymers, Targeted drug delivery


Tajes, M., Ramos-Fernández, E., Weng-Jiang, X., Bosch-Morató, M., Guivernau, B., Eraso-Pichot, A., Salvador, B., Fernàndez-Busquets, X., Roquer, J., Muñoz, F. J., (2014). The blood-brain barrier: Structure, function and therapeutic approaches to cross it Molecular Membrane Biology , 31, (5), 152-167

The blood-brain barrier (BBB) is constituted by a specialized vascular endothelium that interacts directly with astrocytes, neurons and pericytes. It protects the brain from the molecules of the systemic circulation but it has to be overcome for the proper treatment of brain cancer, psychiatric disorders or neurodegenerative diseases, which are dramatically increasing as the population ages. In the present work we have revised the current knowledge on the cellular structure of the BBB and the different procedures utilized currently and those proposed to cross it. Chemical modifications of the drugs, such as increasing their lipophilicity, turn them more prone to be internalized in the brain. Other mechanisms are the use of molecular tools to bind the drugs such as small immunoglobulins, liposomes or nanoparticles that will act as Trojan Horses favoring the drug delivery in brain. This fusion of the classical pharmacology with nanotechnology has opened a wide field to many different approaches with promising results to hypothesize that BBB will not be a major problem for the new generation of neuroactive drugs. The present review provides an overview of all state-of-the-art of the BBB structure and function, as well as of the classic strategies and these appeared in recent years to deliver drugs into the brain for the treatment of Central Nervous System (CNS) diseases.

JTD Keywords: Blood brain barrier, Drug delivery, Membrane transport


Fernàndez-Busquets, X., (2013). Amyloid fibrils in neurodegenerative diseases: villains or heroes? Future Medicinal Chemistry 5, (16), 1903-1906

Fernàndez-Busquets, X., (2013). Heparin-functionalized nanocapsules: Enabling targeted delivery of antimalarial drugs Future Medicinal Chemistry 5, (7), 737-739