DONATE

Publications

by Keyword: Family

Selt, F, Sigaud, R, Valinciute, G, Sievers, P, Zaman, J, Alco, C, Schmid, S, Peterziel, H, Tsai, JW, Guiho, R, Martínez-Barbera, JP, Pusch, S, Deng, J, Zhai, YF, van Tilburg, CM, Schuhman, MU, Damaty, AEL, Bandopadhayay, P, Herold-Mende, C, von Deimling, A, Pfister, SM, Montero, J, Capper, D, Oehme, I, Sahm, F, Jones, DTW, Witt, O, Milde, T, (2023). BH3 mimetics targeting BCL-XL impact the senescent compartment of pilocytic astrocytoma Neuro-Oncology 25, 735-747

Background Pilocytic astrocytoma (PA) is the most common pediatric brain tumor and a mitogen-activated protein kinase (MAPK)-driven disease. Oncogenic MAPK-signaling drives the majority of cells into oncogene-induced senescence (OIS). While OIS induces resistance to antiproliferative therapies, it represents a potential vulnerability exploitable by senolytic agents. Methods We established new patient-derived PA cell lines that preserve molecular features of the primary tumors and can be studied in OIS and proliferation depending on expression or repression of the SV40 large T antigen. We determined expression of anti-apoptotic BCL-2 members in these models and primary PA. Dependence of senescent PA cells on anti-apoptotic BCL-2 members was investigated using a comprehensive set of BH3 mimetics. Results Senescent PA cells upregulate BCL-XL upon senescence induction and show dependency on BCL-XL for survival. BH3 mimetics with high affinity for BCL-XL (BCL-XLi) reduce metabolic activity and induce mitochondrial apoptosis in senescent PA cells at nano-molar concentrations. In contrast, BH3 mimetics without BCL-XLi activity, conventional chemotherapy, and MEK inhibitors show no effect. Conclusions Our data demonstrate that BCL-XL is critical for survival of senescent PA tumor cells and provides proof-of-principle for the use of clinically available BCL-XL-dependent senolytics.

JTD Keywords: bcl-xl, bh3 mimetics, oncogene-induced senescence, Bcl-xl, Bh3 mimetics, Expression, Family, Inhibitor, Low-grade glioma, Navitoclax, Oncogene-induced senescence, Pilocytic astrocytoma, Stem-cells


Chulia-Peris, L, Carreres-Rey, C, Gabasa, M, Alcaraz, J, Carretero, J, Pereda, J, (2022). Matrix Metalloproteinases and Their Inhibitors in Pulmonary Fibrosis: EMMPRIN/CD147 Comes into Play International Journal Of Molecular Sciences 23, 6894

Pulmonary fibrosis (PF) is characterized by aberrant extracellular matrix (ECM) deposition, activation of fibroblasts to myofibroblasts and parenchymal disorganization, which have an impact on the biomechanical traits of the lung. In this context, the balance between matrix metalloproteinases (MMPs) and their tissue inhibitors of metalloproteinases (TIMPs) is lost. Interestingly, several MMPs are overexpressed during PF and exhibit a clear profibrotic role (MMP-2, -3, -8, -11, -12 and -28), but a few are antifibrotic (MMP-19), have both profibrotic and antifibrotic capacity (MMP7), or execute an unclear (MMP-1, -9, -10, -13, -14) or unknown function. TIMPs are also overexpressed in PF; hence, the modulation and function of MMPs and TIMP are more complex than expected. EMMPRIN/CD147 (also known as basigin) is a transmembrane glycoprotein from the immunoglobulin superfamily (IgSF) that was first described to induce MMP activity in fibroblasts. It also interacts with other molecules to execute non-related MMP aactions well-described in cancer progression, migration, and invasion. Emerging evidence strongly suggests that CD147 plays a key role in PF not only by MMP induction but also by stimulating fibroblast myofibroblast transition. In this review, we study the structure and function of MMPs, TIMPs and CD147 in PF and their complex crosstalk between them.

JTD Keywords: basigin, cd147, emmprin, mmps, timps, Basigin, Cd147, Cell-surface, Emmprin, Extracellular-matrix, Gelatinase-b, Gene-expression profiles, Growth-factor-beta, Immunoglobulin superfamily, Induced lung injury, Inducer emmprin, Mmps, Pulmonary fibrosis, Timps, Tissue inhibitor, Transforming growth-factor-beta-1


Montero, J, Haq, R, (2022). Adapted to Survive: Targeting Cancer Cells with BH3 Mimetics Cancer Discovery 12, 1217-1232

A hallmark of cancer is cell death evasion, underlying suboptimal responses to chemotherapy, targeted agents, and immunotherapies. The approval of the anti apoptotic BCL2 antagonist venetoclax has fi nally validated the potential of targeting apoptotic pathways in patients with cancer. Nevertheless, pharmacologic modulators of cell death have shown markedly varied responses in preclinical and clinical studies. Here, we review emerging concepts in the use of this class of therapies. Building on these observations, we propose that treatment-induced changes in apoptotic dependency, rather than pretreatment dependencies, will need to be recognized and targeted to realize the precise deployment of these new pharmacologic agents. Signifi cance: Targeting antiapoptotic family members has proven effi cacious and tolerable in some cancers, but responses are infrequent, particularly for patients with solid tumors. Biomarkers to aid patient selection have been lacking. Precision functional approaches that overcome adaptive resistance to these compounds could drive durable responses to chemotherapy, targeted therapy, and immunotherapies.

JTD Keywords: Anti-apoptotic mcl-1, Bcl-x-l, Bim expression, Chemotherapy sensitivity, Combination strategies, Family proteins, Multiple-myeloma, Oblimersen sodium, Phase-i, Venetoclax resistance


Schroeder, B, Vander Steen, T, Espinoza, I, Venkatapoorna, CMK, Hu, Z, Silva, FM, Regan, K, Cuyàs, E, Meng, XW, Verdura, S, Arbusà, A, Schneider, PA, Flatten, KS, Kemble, G, Montero, J, Kaufmann, SH, Menendez, JA, Lupu, R, (2021). Fatty acid synthase (FASN) regulates the mitochondrial priming of cancer cells Cell Death & Disease 12, 977

Inhibitors of the lipogenic enzyme fatty acid synthase (FASN) have attracted much attention in the last decade as potential targeted cancer therapies. However, little is known about the molecular determinants of cancer cell sensitivity to FASN inhibitors (FASNis), which is a major roadblock to their therapeutic application. Here, we find that pharmacological starvation of endogenously produced FAs is a previously unrecognized metabolic stress that heightens mitochondrial apoptotic priming and favors cell death induction by BH3 mimetic inhibitors. Evaluation of the death decision circuits controlled by the BCL-2 family of proteins revealed that FASN inhibition is accompanied by the upregulation of the pro-death BH3-only proteins BIM, PUMA, and NOXA. Cell death triggered by FASN inhibition, which causally involves a palmitate/NADPH-related redox imbalance, is markedly diminished by concurrent loss of BIM or PUMA, suggesting that FASN activity controls cancer cell survival by fine-tuning the BH3 only proteins-dependent mitochondrial threshold for apoptosis. FASN inhibition results in a heightened mitochondrial apoptosis priming, shifting cells toward a primed-for-death state “addicted” to the anti-apoptotic protein BCL-2. Accordingly, co-administration of a FASNi synergistically augments the apoptosis-inducing activity of the dual BCL-XL/BCL-2 inhibitor ABT-263 (navitoclax) and the BCL-2 specific BH3-mimetic ABT-199 (venetoclax). FASN inhibition, however, fails to sensitize breast cancer cells to MCL-1- and BCL-XL-selective inhibitors such as S63845 and A1331852. A human breast cancer xenograft model evidenced that oral administration of the only clinically available FASNi drastically sensitizes FASN-addicted breast tumors to ineffective single-agents navitoclax and venetoclax in vivo. In summary, a novel FASN-driven facet of the mitochondrial priming mechanistically links the redox-buffering mechanism of FASN activity to the intrinsic apoptotic threshold in breast cancer cells. Combining next-generation FASNis with BCL-2-specific BH3 mimetics that directly activate the apoptotic machinery might generate more potent and longer-lasting antitumor responses in a clinical setting.

JTD Keywords: activation, apoptosis, bh3 mimetics, cytochrome-c, death, inhibition, metabolism, pathways, venetoclax, Bcl-2 family


Manzano-Muñoz, A, Alcon, C, Menéndez, P, Ramírez, M, Seyfried, F, Debatin, KM, Meyer, LH, Samitier, J, Montero, J, (2021). MCL-1 Inhibition Overcomes Anti-apoptotic Adaptation to Targeted Therapies in B-Cell Precursor Acute Lymphoblastic Leukemia Frontiers In Cell And Developmental Biology 9, 695225

Multiple targeted therapies are currently explored for pediatric and young adult B-cell precursor acute lymphoblastic leukemia (BCP-ALL) treatment. However, this new armamentarium of therapies faces an old problem: choosing the right treatment for each patient. The lack of predictive biomarkers is particularly worrying for pediatric patients since it impairs the implementation of new treatments in the clinic. In this study, we used the functional assay dynamic BH3 profiling (DBP) to evaluate two new treatments for BCP-ALL that could improve clinical outcome, especially for relapsed patients. We found that the MEK inhibitor trametinib and the multi-target tyrosine kinase inhibitor sunitinib exquisitely increased apoptotic priming in an NRAS-mutant and in a KMT2A-rearranged cell line presenting a high expression of FLT3, respectively. Following these observations, we sought to study potential adaptations to these treatments. Indeed, we identified with DBP anti-apoptotic changes in the BCL-2 family after treatment, particularly involving MCL-1 – a pro-survival strategy previously observed in adult cancers. To overcome this adaptation, we employed the BH3 mimetic S63845, a specific MCL-1 inhibitor, and evaluated its sequential addition to both kinase inhibitors to overcome resistance. We observed that the metronomic combination of both drugs with S63845 was synergistic and showed an increased efficacy compared to single agents. Similar observations were made in BCP-ALL KMT2A-rearranged PDX cells in response to sunitinib, showing an analogous DBP profile to the SEM cell line. These findings demonstrate that rational sequences of targeted agents with BH3 mimetics, now extensively explored in clinical trials, may improve treatment effectiveness by overcoming anti-apoptotic adaptations in BCP-ALL.

JTD Keywords: apoptosis, bh3 mimetics, cancer, dependence, increases, kinase inhibition, pediatric leukemia, precision medicine, resistance, sensitivity, targeted therapies, tumor-cells, venetoclax, Apoptosis, Bcl-2 family proteins, Bh3 mimetics, Pediatric leukemia, Resistance, Targeted therapies


Celauro, Emanuele, Carra, Silvia, Rodriguez, Adriana, Cotelli, Franco, Dimitri, Patrizio, (2017). Functional analysis of the cfdp1 gene in zebrafish provides evidence for its crucial role in craniofacial development and osteogenesis Experimental Cell Research 361, (2), 236-245

exThe CFDP1 proteins have been linked to craniofacial development and osteogenesis in vertebrates, though specific human syndromes have not yet been identified. Alterations of craniofacial development represent the main cause of infant disability and mortality in humans. For this reason, it is crucial to understand the cellular functions and mechanism of action of the CFDP1 protein in model vertebrate organisms. Using a combination of genomic, molecular and cell biology approaches, we have performed a functional analysis of the cfdp1 gene and its encoded protein, zCFDP1, in the zebrafish model system. We found that zCFDP1 is present in the zygote, is rapidly produced after MTZ transition and is highly abundant in the head structures. Depletion of zCFDP1, induced by an ATG-blocking morpholino, produces considerable defects in craniofacial structures and bone mineralization. Together, our results show that zCFDP1 is an essential protein required for proper development and provide the first experimental evidence showing that in vertebrates it actively participates to the morphogenesis of craniofacial territories.

JTD Keywords: Craniofacial development, BCNT protein family, Zebrafish, Morpholino


Solano-Collado, Virtu, Hüttener, Márrio, Espinosa, Manuel, Juárez, Antonio, Bravo, Alicia, (2016). MgaSpn and H-NS: Two unrelated global regulators with similar DNA-binding properties Frontiers in Molecular Biosciences 3, Article 60

Global regulators play an essential role in the adaptation of bacterial cells to specific niches. Bacterial pathogens thriving in the tissues and organs of their eukaryotic hosts are a well-studied example. Some of the proteins that recognize local DNA structures rather than specific nucleotide sequences act as global modulators in many bacteria, both Gram-negative and -positive. To this class of regulators belong the H-NS-like proteins, mainly identified in γ-Proteobacteria, and the MgaSpn-like proteins identified in Firmicutes. H-NS and MgaSpn from Escherichia coli and Streptococcus pneumoniae, respectively, neither have sequence similarity nor share structural domains. Nevertheless, they display common features in their interaction with DNA, namely: (i) they bind to DNA in a non-sequence-specific manner, (ii) they have a preference for intrinsically curved DNA regions, and (iii) they are able to form multimeric complexes on linear DNA. Using DNA fragments from the hemolysin operon regulatory region of the E. coli plasmid pHly152, we show in this work that MgaSpn is able to recognize particular regions on extended H-NS binding sites. Such regions are either located at or flanked by regions of potential bendability. Moreover, we show that the regulatory region of the pneumococcal P1623B promoter, which is recognized by MgaSpn, contains DNA motifs that are recognized by H-NS. These motifs are adjacent to regions of potential bendability. Our results suggest that both regulatory proteins recognize similar structural characteristics of DNA.

JTD Keywords: Global transcriptional regulators, Nucleoid-associated proteins, Mga/AtxA family, Protein-DNA interactions, DNA bendability