DONATE

Publications

by Keyword: Fire alarm

Solorzano, A, Eichmann, J, Fernandez, L, Ziems, B, Jimenez-Soto, JM, Marco, S, Fonollosa, J, (2022). Early fire detection based on gas sensor arrays: Multivariate calibration and validation Sensors And Actuators B-Chemical 352, 130961

Smoldering fires are characterized by the production of early gas emissions that can include high levels of CO and Volatile Organic Compounds (VOCs) due to pyrolysis or thermal degradation. Nowadays, standalone CO sensors, smoke detectors, or a combination of these, are standard components for fire alarm systems. While gas sensor arrays together with pattern recognition techniques are a valuable alternative for early fire detection, in practice they have certain drawbacks-they can detect early gas emissions, but can show low immunity to nuisances, and sensor time drift can render calibration models obsolete. In this work, we explore the performance of a gas sensor array for detecting smoldering and plastic fires while ensuring the rejection of a set of nuisances. We conducted variety of fire and nuisance experiments in a validated standard fire room (240 m(3)). Using PLS-DA and SVM, we evaluate the performance of different multivariate calibration models for this dataset. We show that calibration models remain predictive after several months, but perfect performance is not achieved. For example, 4 months after calibration, a PLS-DA model provides 100% specificity and 85% sensitivity since the system has difficulties in detecting plastic fires, whose signatures are close to nuisance scenarios. Nevertheless, our results show that systems based on gas sensor arrays are able to provide faster fire alarm response than conventional smoke-based fire alarms. We also propose the use of small-scale fire experiments to increase the number of calibration conditions at a reduced cost. Our results show that this is an effective way to increase the performance of the model, even when evaluated on a standard fire room. Finally, the acquired datasets are made publicly available to the community (doi: 10.5281/zenodo.5643074).

JTD Keywords: Calibration, Chemical sensors, Co2, Early fire, Early fire detection, En-54, Fire alarm, Fire detection, Fire room, Fires, Gas detectors, Gas emissions, Gas sensors, Pattern recognition, Public dataset, Sensor arrays, Sensors array, Signatures, Smoke, Smoke detector, Smoke detectors, Standard fire, Standard fire room, Support vector machines, Temperature, Toxicity, Volatile organic compounds


Solorzano, A., Fonollosa, J., Fernandez, L., Eichmann, J., Marco, S., (2017). Fire detection using a gas sensor array with sensor fusion algorithms IEEE Conference Publications ISOCS/IEEE International Symposium on Olfaction and Electronic Nose (ISOEN) , IEEE (Montreal, Canada) , 1-3

Conventional fire alarms are based on smoke detection. Nevertheless, in some fire scenarios volatiles are released before smoke. Fire detectors based only on chemical sensors have already been proposed as they may provide faster response, but they are still prone to false alarms in the presence of nuisances. These systems rely heavily on pattern recognition techniques to discriminate fires from nuisances. In this context, it is important to test the systems according to international standards for fires and testing the system against a diversity of nuisances. In this work, we investigate the behavior of a gas sensor array coupled to sensor fusion algorithms for fire detection when exposed to standardized fires and several nuisances. Results confirmed the ability to detect fires (97% Sensitivity), although the system still produces a significant rate of false alarms (35%) for nuisances not presented in the training set.

JTD Keywords: Fire alarm, Gas sensor array, Machine Olfaction, Multisensor system, Sensor fusion