by Keyword: Sleep apnea syndromes
Gregori-Pla, C, Zirak, P, Cotta, G, Bramon, P, Blanco, I, Serra, I, Mola, A, Fortuna, A, Solà-Soler, J, Giraldo, BFG, Durduran, T, Mayos, M, (2023). How does obstructive sleep apnea alter cerebral hemodynamics? Sleep 46, zsad122
We aimed to characterize the cerebral hemodynamic response to obstructive sleep apnea/hypopnea events, and evaluate their association to polysomnographic parameters. The characterization of the cerebral hemodynamics in obstructive sleep apnea (OSA) may add complementary information to further the understanding of the severity of the syndrome beyond the conventional polysomnography.Severe OSA patients were studied during night sleep while monitored by polysomnography. Transcranial, bed-side diffuse correlation spectroscopy (DCS) and frequency-domain near-infrared diffuse correlation spectroscopy (NIRS-DOS) were used to follow microvascular cerebral hemodynamics in the frontal lobes of the cerebral cortex. Changes in cerebral blood flow (CBF), total hemoglobin concentration (THC), and cerebral blood oxygen saturation (StO2) were analyzed.We considered 3283 obstructive apnea/hypopnea events from sixteen OSA patients (Age (median, interquartile range) 57 (52-64.5); females 25%; AHI (apnea-hypopnea index) 84.4 (76.1-93.7)). A biphasic response (maximum/minimum followed by a minimum/maximum) was observed for each cerebral hemodynamic variable (CBF, THC, StO2), heart rate and peripheral arterial oxygen saturation (SpO2). Changes of the StO2 followed the dynamics of the SpO2, and were out of phase from the THC and CBF. Longer events were associated with larger CBF changes, faster responses and slower recoveries. Moreover, the extrema of the response to obstructive hypopneas were lower compared to apneas (p < .001).Obstructive apneas/hypopneas cause profound, periodic changes in cerebral hemodynamics, including periods of hyper- and hypo-perfusion and intermittent cerebral hypoxia. The duration of the events is a strong determinant of the cerebral hemodynamic response, which is more pronounced in apnea than hypopnea events.© The Author(s) 2023. Published by Oxford University Press on behalf of Sleep Research Society.
JTD Keywords: cerebral hemodynamics, desaturation, diffuse correlation spectroscopy, duration, hypopnea, hypoxemia, near-infrared spectroscopy, optical pathlength, oxygenation, severity, sleep disorder, spectroscopy, tissue, Adult, Airway obstruction, Apnea hypopnea index, Arterial oxygen saturation, Article, Blood oxygen tension, Blood-flow, Brain blood flow, Brain cortex, Cerebral hemodynamics, Controlled study, Diffuse correlation spectroscopy, Disease severity, Female, Frequency, Frontal lobe, Heart rate, Hemodynamics, Hemoglobin, Hemoglobin determination, Human, Humans, Major clinical study, Male, Near infrared spectroscopy, Near-infrared spectroscopy, Obstructive sleep apnea, Oxygen, Periodicity, Polysomnography, Sleep apnea syndromes, Sleep apnea, obstructive, Sleep disorder, Spectroscopy, near-infrared
Fiz, J. A., Jané, R., Solà, J., Abad, J., Garcia, M. A., Morera, J., (2010). Continuous analysis and monitoring of snores and their relationship to the apnea-hypopnea index Laryngoscope , 120, (4), 854-862
Objectives/Hypothesis: We used a new automatic snoring detection and analysis system to monitor snoring during full-night polysomnography to assess whether the acoustic characteristics of snores differ in relation to the apnea-hypopnea index (AHI) and to classify subjects according to their AHI Study Design: Individual Case-Control Study. Methods: Thirty-seven snorers (12 females and 25 males, ages 40-65 years; body mass index (BMI), 29.65 +/- 4.7 kg/m(2)) participated Subjects were divided into three groups: G1 (AHI <5), G2 (AHI >= 5, <15) and G3 (AHI >= 15) Snore and breathing sounds were : recorded with a tracheal microphone throughout 6 hours of nighttime polysomnography The snoring episodes identified were automatically and continuously analyzed with a previously trained 2-layer feed-forward neural network. Snore number, average intensity, and power spectral density parameters were computed for every subject and compared among AHI groups. Subjects were classified using different AHI thresholds by means of a logistic regression model. Results: There were significant differences in supine position between G1 and G3 in sound intensity, number of snores; standard deviation of the spectrum, power ratio in bands 0-500, 100-500, and 0-800 Hz, and the symmetry coefficient (P < .03); Patients were classified with thresholds AHI = 5 and AHI = 15 with a sensitivity (specificity) of 87% (71%) and 80% (90%), respectively. Conclusions: A new system for automatic monitoring and analysis of snores during the night is presented. Sound intensity and several snore frequency parameters allow differentiation of snorers according to obstructive sleep apnea syndrome severity (OSAS). Automatic snore intensity and frequency monitoring and analysis could be a promising tool for screening OSAS patients, significantly improving the managing of this pathology.
JTD Keywords: Breathing sounds, Signal interpretation, Sleep apnea syndromes, Snoring