DONATE

Publications

by Keyword: Gene delivery

Navalon-Lopez, M, Dols-Perez, A, Grijalvo, S, Fornaguera, C, Borros, S, (2023). Unravelling the role of individual components in pBAE/polynucleotide polyplexes in the synthesis of tailored carriers for specific applications: on the road to rational formulations Nanoscale Advances 5, 1611-1623

Our study of pBAE polyplexes unveil their insight distribution and peptide-dependent properties. This analysis makes the gap from bench to bedside closer due to the possibility to select the most appropriate oligopeptide combination depending on the application.

JTD Keywords: gene delivery, Poly(beta-amino ester)s


De Lama-Odría, MD, Del Valle, LJ, Puiggalí, J, (2022). Hydroxyapatite Biobased Materials for Treatment and Diagnosis of Cancer International Journal Of Molecular Sciences 23, 11352

Great advances in cancer treatment have been undertaken in the last years as a consequence of the development of new antitumoral drugs able to target cancer cells with decreasing side effects and a better understanding of the behavior of neoplastic cells during invasion and metastasis. Specifically, drug delivery systems (DDS) based on the use of hydroxyapatite nanoparticles (HAp NPs) are gaining attention and merit a comprehensive review focused on their potential applications. These are derived from the intrinsic properties of HAp (e.g., biocompatibility and biodegradability), together with the easy functionalization and easy control of porosity, crystallinity and morphology of HAp NPs. The capacity to tailor the properties of DLS based on HAp NPs has well-recognized advantages for the control of both drug loading and release. Furthermore, the functionalization of NPs allows a targeted uptake in tumoral cells while their rapid elimination by the reticuloendothelial system (RES) can be avoided. Advances in HAp NPs involve not only their use as drug nanocarriers but also their employment as nanosystems for magnetic hyperthermia therapy, gene delivery systems, adjuvants for cancer immunotherapy and nanoparticles for cell imaging.

JTD Keywords: antitumoral, cancer, cell imaging, controlled-release, drug-carrier, efficient drug-delivery, fatty-acid-metabolism, fe3o4 nanoparticles, gene delivery, hydroxyapatite, hyperthermia, immunotherapy, in-vitro, magnetic hydroxyapatite, nano-hydroxyapatite, protein adsorption, tumor-growth, Calcium-phosphate nanoparticles, Cancer, Immunotherapy


Feiner-Gracia, N., Olea, R. A., Fitzner, R., El Boujnouni, N., Van Asbeck, A. H., Brock, R., Albertazzi, L., (2019). Super-resolution imaging of structure, molecular composition, and stability of single oligonucleotide polyplexes Nano Letters 19, (5), 2784-2792

The successful application of gene therapy relies on the development of safe and efficient delivery vectors. Cationic polymers such as cell-penetrating peptides (CPPs) can condense genetic material into nanoscale particles, called polyplexes, and induce cellular uptake. With respect to this point, several aspects of the nanoscale structure of polyplexes have remained elusive because of the difficulty in visualizing the molecular arrangement of the two components with nanometer resolution. This limitation has hampered the rational design of polyplexes based on direct structural information. Here, we used super-resolution imaging to study the structure and molecular composition of individual CPP-mRNA polyplexes with nanometer accuracy. We use two-color direct stochastic optical reconstruction microscopy (dSTORM) to unveil the impact of peptide stoichiometry on polyplex structure and composition and to assess their destabilization in blood serum. Our method provides information about the size and composition of individual polyplexes, allowing the study of such properties on a single polyplex basis. Furthermore, the differences in stoichiometry readily explain the differences in cellular uptake behavior. Thus, quantitative dSTORM of polyplexes is complementary to the currently used characterization techniques for understanding the determinants of polyplex activity in vitro and inside cells.

JTD Keywords: dSTORM, Gene delivery, Polyplexes, Stability, Super-resolution microscopy