by Keyword: Swarming
Fraire JC, Prado-Morales C, Aldaz Sagredo A, Caelles AG, Lezcano F, Peetroons X, Bakenecker AC, Di Carlo V, Sánchez S, (2024). Swarms of Enzymatic Nanobots for Efficient Gene Delivery Acs Applied Materials & Interfaces 16, 47192-47205
This study investigates the synthesis and optimization of nanobots (NBs) loaded with pDNA using the layer-by-layer (LBL) method and explores the impact of their collective motion on the transfection efficiency. NBs consist of biocompatible and biodegradable poly(lactic-co-glycolic acid) (PLGA) nanoparticles and are powered by the urease enzyme, enabling autonomous movement and collective swarming behavior. In vitro experiments were conducted to validate the delivery efficiency of fluorescently labeled NBs, using two-dimensional (2D) and three-dimensional (3D) cell models: murine urothelial carcinoma cell line (MB49) and spheroids from human urothelial bladder cancer cells (RT4). Swarms of pDNA-loaded NBs showed enhancements of 2.2- to 2.6-fold in delivery efficiency and 6.8- to 8.1-fold in material delivered compared to inhibited particles (inhibited enzyme) and the absence of fuel in a 2D cell culture. Additionally, efficient intracellular delivery of pDNA was demonstrated in both cell models by quantifying and visualizing the expression of eGFP. Swarms of NBs exhibited a >5-fold enhancement in transfection efficiency compared to the absence of fuel in a 2D culture, even surpassing the Lipofectamine 3000 commercial transfection agent (cationic lipid-mediated transfection). Swarms also demonstrated up to a 3.2-fold enhancement in the amount of material delivered in 3D spheroids compared to the absence of fuel. The successful transfection of 2D and 3D cell cultures using swarms of LBL PLGA NBs holds great potential for nucleic acid delivery in the context of bladder treatments.
JTD Keywords: Animals, Barrier, Cell line, tumor, Dna, Drug delivery, Drug-delivery, Enzyme catalysis, Gene delivery, Gene transfer techniques, Humans, Lactic acid, Mice, Nanobots, Nanoparticles, Pdna, Plasmids, Polyglycolic acid, Polylactic acid-polyglycolic acid copolymer, Swarming, Transfectio, Transfection, Urease, Urinary bladder neoplasms
Ruiz-González, N, Esporrín-Ubieto, D, Hortelao, AC, Fraire, JC, Bakenecker, AC, Guri-Canals, M, Cugat, R, Carrillo, JM, Garcia-Batlletbó, M, Laiz, P, Patiño, T, Sánchez, S, (2024). Swarms of Enzyme-Powered Nanomotors Enhance the Diffusion of Macromolecules in Viscous Media Small 20, 2309387
Over the past decades, the development of nanoparticles (NPs) to increase the efficiency of clinical treatments has been subject of intense research. Yet, most NPs have been reported to possess low efficacy as their actuation is hindered by biological barriers. For instance, synovial fluid (SF) present in the joints is mainly composed of hyaluronic acid (HA). These viscous media pose a challenge for many applications in nanomedicine, as passive NPs tend to become trapped in complex networks, which reduces their ability to reach the target location. This problem can be addressed by using active NPs (nanomotors, NMs) that are self-propelled by enzymatic reactions, although the development of enzyme-powered NMs, capable of navigating these viscous environments, remains a considerable challenge. Here, the synergistic effects of two NMs troops, namely hyaluronidase NMs (HyaNMs, Troop 1) and urease NMs (UrNMs, Troop 2) are demonstrated. Troop 1 interacts with the SF by reducing its viscosity, thus allowing Troop 2 to swim more easily through the SF. Through their collective motion, Troop 2 increases the diffusion of macromolecules. These results pave the way for more widespread use of enzyme-powered NMs, e.g., for treating joint injuries and improving therapeutic effectiveness compared with traditional methods. The conceptual idea of the novel approach using hyaluronidase NMs (HyaNMs) to interact with and reduce the viscosity of the synovial fluid (SF) and urease NMs (UrNMs) for a more efficient transport of therapeutic agents in joints.image
JTD Keywords: Biological barrier, Clinical research, Clinical treatments, Collective motion, Collective motion,nanomotors,nanorobots,swarming,viscous medi, Collective motions, Complex networks, Enzymatic reaction, Enzymes, Hyaluronic acid, Hyaluronic-acid,ph,viscoelasticity,adsorption,barriers,behavior,ureas, Macromolecules, Medical nanotechnology, Nano robots, Nanomotors, Nanorobots, Swarming, Synovial fluid, Target location, Viscous media, Viscous medium
Fraire, JC, Guix, M, Hortelao, AC, Ruiz-González, N, Bakenecker, AC, Ramezani, P, Hinnekens, C, Sauvage, F, De Smedt, SC, Braeckmans, K, Sánchez, S, (2023). Light-Triggered Mechanical Disruption of Extracellular Barriers by Swarms of Enzyme-Powered Nanomotors for Enhanced Delivery Acs Nano 17, 7180-7193
Targeted drug delivery depends on the ability of nanocarriers to reach the target site, which requires the penetration of different biological barriers. Penetration is usually low and slow because of passive diffusion and steric hindrance. Nanomotors (NMs) have been suggested as the next generation of nanocarriers in drug delivery due to their autonomous motion and associated mixing hydrodynamics, especially when acting collectively as a swarm. Here, we explore the concept of enzyme-powered NMs designed as such that they can exert disruptive mechanical forces upon laser irradiation. The urease-powered motion and swarm behavior improve translational movement compared to passive diffusion of state-of-the-art nanocarriers, while optically triggered vapor nanobubbles can destroy biological barriers and reduce steric hindrance. We show that these motors, named Swarm 1, collectively displace through a microchannel blocked with type 1 collagen protein fibers (barrier model), accumulate onto the fibers, and disrupt them completely upon laser irradiation. We evaluate the disruption of the microenvironment induced by these NMs (Swarm 1) by quantifying the efficiency by which a second type of fluorescent NMs (Swarm 2) can move through the cleared microchannel and be taken up by HeLa cells at the other side of the channel. Experiments showed that the delivery efficiency of Swarm 2 NMs in a clean path was increased 12-fold in the presence of urea as fuel compared to when no fuel was added. When the path was blocked with the collagen fibers, delivery efficiency dropped considerably and only depicted a 10-fold enhancement after pretreatment of the collagen-filled channel with Swarm 1 NMs and laser irradiation. The synergistic effect of active motion (chemically propelled) and mechanical disruption (light-triggered nanobubbles) of a biological barrier represents a clear advantage for the improvement of therapies which currently fail due to inadequate passage of drug delivery carriers through biological barriers.
JTD Keywords: drug delivery, enzyme catalysis, nanoparticles, swarming, vapor nanobubbles, Drug carriers, Drug delivery, Drug delivery systems, Enzyme catalysis, Hela cells, Humans, Nanomotors, Nanoparticles, Swarming, Vapor nanobubbles