DONATE

Publications

by Keyword: Green solvent

Salerno, A., Levato, R., Mateos-Timoneda, M. A., Engel, E., Netti, P. A., Planell, J. A., (2013). Modular polylactic acid microparticle-based scaffolds prepared via microfluidic emulsion/solvent displacement process: Fabrication, characterization, and in vitro mesenchymal stem cells interaction study Journal of Biomedical Materials Research - Part A , 101A, (3), 720-732

The present study reports a novel approach for the design and fabrication of polylactic acid (PLA) microparticle-based scaffolds with microstructural properties suitable for bone and cartilage regeneration. Macroporous PLA scaffolds with controlled shape were fabricated by means of a semicontinuous process involving (1) microfluidic emulsification of a PLA/ethyl lactate solution (5% w/v) in a span 80/paraffin oil solution (3% v/v) followed by (2) particles coagulation/assembly in an acetone/water solution for the development of a continuous matrix. Porous scaffolds prepared from particles with monomodal or bimodal size distribution, overall porosity ranges from 93 to 96%, interparticles porosity from 41 to 54%, and static compression moduli from 0.3 to 1.4 MPa were manufactured by means of flow rate modulation of of the continuous phase during emulsion. The biological response of the scaffolds was assessed in vitro by using bone marrow-derived rat mesenchymal stem cells (MSCs). The results demonstrated the ability of the scaffolds to support the extensive and uniform three-dimensional adhesion, colonization, and proliferation of MSCs within the entire construct.

JTD Keywords: Green solvent, Microfluidic, Microstructure, Stem cells, Scaffold


Levato, Riccardo, Mateos-Timoneda, Miguel A., Planell, Josep A., (2012). Preparation of biodegradable polylactide microparticles via a biocompatible procedure Macromolecular Bioscience 12, (4), 557-566

PLA MPs are prepared via a novel and toxic-chemical-free fabrication route using ethyl lactate, a green solvent and FDA-approved aroma. MPs are obtained by a solution jet break-up and solvent displacement method. Adjusting flow parameters allows the tuning of MPs size between 60 and 180 µm, with reduced polydispersity. Morphological analysis shows microporous particles with Janus-like surface. A fluorophore is successfully loaded into the MPs during their formation step. This versatile green solvent-based procedure is proven to be suitable for drug encapsulation and delivery applications. The method may be extended to different droplet generation techniques.

JTD Keywords: Biocompatibility, Biodegradable, Green solvents, Microparticles, Poly(lactic acid)