DONATE

Publications

by Keyword: Hydrogen peroxide

Padial, TP, Del Grosso, E, Gentile, S, Pellejero, LB, Mestre, R, Paffen, LJMM, Sánchez, S, Ricci, F, (2024). Synthetic DNA-based Swimmers Driven by Enzyme Catalysis Journal Of The American Chemical Society 146, 12664-12671

Here, we report DNA-based synthetic nanostructures decorated with enzymes (hereafter referred to as DNA-enzyme swimmers) that self-propel by converting the enzymatic substrate to the product in solution. The DNA-enzyme swimmers are obtained from tubular DNA structures that self-assemble spontaneously by the hybridization of DNA tiles. We functionalize these DNA structures with two different enzymes, urease and catalase, and show that they exhibit concentration-dependent movement and enhanced diffusion upon addition of the enzymatic substrate (i.e., urea and H2O2). To demonstrate the programmability of such DNA-based swimmers, we also engineer DNA strands that displace the enzyme from the DNA scaffold, thus acting as molecular brakes on the DNA swimmers. These results serve as a first proof of principle for the development of synthetic DNA-based enzyme-powered swimmers that can self-propel in fluids.

JTD Keywords: Biocatalysis, Catalase, Design, Dna, Hydrogen peroxide, Motor, Nanostructures, Shapes, Urease


Tampieri, F, Espona-Noguera, A, Labay, C, Ginebra, MP, Yusupov, M, Bogaerts, A, Canal, C, (2023). Does non-thermal plasma modify biopolymers in solution? A chemical and mechanistic study for alginate Biomaterials Science 11, 4845-4858

The mutual interaction between reactive species generated by non-thermal plasma and biopolymers in solution causes oxidative modifications that can have an impact in biomedical applications.

JTD Keywords: atmospheric plasma, cellulose, dftb3, gas, oxidation, parameterization, simulations, water, Biopolymers, Hydrogen peroxide, Molecular dynamics simulation, Molecular-dynamics, Nitrites, Reactive oxygen species