DONATE

Publications

by Keyword: Reactive oxygen species

Tampieri, F, Espona-Noguera, A, Labay, C, Ginebra, MP, Yusupov, M, Bogaerts, A, Canal, C, (2023). Does non-thermal plasma modify biopolymers in solution? A chemical and mechanistic study for alginate Biomaterials Science 11, 4845-4858

The mutual interaction between reactive species generated by non-thermal plasma and biopolymers in solution causes oxidative modifications that can have an impact in biomedical applications.

JTD Keywords: atmospheric plasma, cellulose, dftb3, gas, oxidation, parameterization, simulations, water, Biopolymers, Hydrogen peroxide, Molecular dynamics simulation, Molecular-dynamics, Nitrites, Reactive oxygen species


Bertran, O, Martí, D, Torras, J, Turon, P, Alemán, C, (2022). Computer simulations on oxidative stress-induced reactions in SARS-CoV-2 spike glycoprotein: a multi-scale approach Molecular Diversity 26, 3143-3155

Abstract Oxidative stress, which occurs when an organism is exposed to an adverse stimulus that results in a misbalance of antioxidant and pro-oxidants species, is the common denominator of diseases considered as a risk factor for SARS-CoV-2 lethality. Indeed, reactive oxygen species caused by oxidative stress have been related to many virus pathogenicity. In this work, simulations have been performed on the receptor binding domain of SARS-CoV-2 spike glycoprotein to study what residues are more susceptible to be attacked by ·OH, which is one of the most reactive radicals associated to oxidative stress. The results indicate that isoleucine (ILE) probably plays a crucial role in modification processes driven by radicals. Accordingly, QM/MM-MD simulations have been conducted to study both the ·OH-mediated hydrogen abstraction of ILE residues and the induced modification of the resulting ILE radical through hydroxylation or nitrosylation reactions. All in all, in silico studies show the importance of the chemical environment triggered by oxidative stress on the modifications of the virus, which is expected to help for foreseeing the identification or development of antioxidants as therapeutic drugs. Graphic abstract

JTD Keywords: atom abstraction, damage, density functionals, hydrogen abstraction, isoleucine, molecular dynamics, pathogenesis, protein, reactive oxygen species, receptor binding domain, residues, spike protein, Amino-acids, Hydrogen abstraction, Isoleucine, Molecular dynamics, Reactive oxygen species, Receptor binding domain, Spike protein


Sole-Marti, X, Vilella, T, Labay, C, Tampieri, F, Ginebra, MP, Canal, C, (2022). Thermosensitive hydrogels to deliver reactive species generated by cold atmospheric plasma: a case study with methylcellulose Biomaterials Science 10, 3845-3855

Hydrogels have been recently proposed as suitable materials to generate reactive oxygen and nitrogen species (RONS) upon gas-plasma treatment, and postulated as promising alternatives to conventional cancer therapies. Acting as delivery vehicles that allow a controlled release of RONS to the diseased site, plasma-treated hydrogels can overcome some of the limitations presented by plasma-treated liquids in in vivo therapies. In this work, we optimized the composition of a methylcellulose (MC) hydrogel to confer it with the ability to form a gel at physiological temperatures while remaining in the liquid phase at room temperature to allow gas-plasma treatment with suitable formation of plasma-generated RONS. MC hydrogels demonstrated the capacity for generation, prolonged storage and release of RONS. This release induced cytotoxic effects on the osteosarcoma cancer cell line MG-63, reducing its cell viability in a dose-response manner. These promising results postulate plasma-treated thermosensitive hydrogels as good candidates to provide local anticancer therapies.

JTD Keywords: Case-control studies, Cellulose, Hydrogels, Methylcellulose, Phase-separation, Plasma gases, Reactive oxygen species, Stability, Substituent, Temperature, Thermoreversible gelation