DONATE

Publications

by Keyword: Hydrothermal synthesis

Diez-Escudero, A, Espanol, M, Ginebra, MP, (2023). High-aspect-ratio nanostructured hydroxyapatite: towards new functionalities for a classical material Chemical Science 15, 55-76

Hydroxyapatite-based materials have been widely used in countless applications, such as bone regeneration, catalysis, air and water purification or protein separation. Recently, much interest has been given to controlling the aspect ratio of hydroxyapatite crystals from bulk samples. The ability to exert control over the aspect ratio may revolutionize the applications of these materials towards new functional materials. Controlling the shape, size and orientation of HA crystals allows obtaining high aspect ratio structures, improving several key properties of HA materials such as molecule adsorption, ion exchange, catalytic reactions, and even overcoming the well-known brittleness of ceramic materials. Regulating the morphogenesis of HA crystals to form elongated oriented fibres has led to flexible inorganic synthetic sponges, aerogels, membranes, papers, among others, with applications in sustainability, energy and catalysis, and especially in the biomedical field.; Hydroxyapatite-based materials have been widely used in countless applications, such as bone regeneration, catalysis, air and water purification or protein separation.

JTD Keywords: Bone, Calcium-phosphate, Doped hydroxyapatite, Fire-resistant, Hydrothermal synthesis, Metal-ions, Nanoparticles, Nanowires, Particle-size, Porous nanocomposite


Sans, J, Sanz, V, del Valle, LJ, Puiggali, J, Turon, P, Aleman, C, (2021). Optimization of permanently polarized hydroxyapatite catalyst. Implications for the electrophotosynthesis of amino acids by nitrogen and carbon fixation Journal Of Catalysis 397, 98-107

The enhanced catalytic activity of permanently polarized hydroxyapatite, which is achieved using a thermally stimulated polarization process, largely depends on both the experimental conditions used to prepare crystalline hydroxyapatite from its calcium and phosphate precursors and the polarization process parameters. A mineral similar to brushite, which is an apatitic phase that can evolve to hydroxyapatite, is found at the surface of highly crystalline hydroxyapatite. It appears after chemical precipitation and hydrothermal treatment performed at 150 degrees C for 24 h followed by a sinterization at 1000 degrees C and a polarization treatment by applying a voltage of 500 Vat high temperature. Both the high crystallinity and the presence of brushite-like phase on the electrophotocatalyst affect the nitrogen and carbon fixation under mild reaction conditions (95 degrees C and 6 bar) and the synthesis of glycine and alanine from a simple gas mixture containing N-2, CO2, CH4 and H2O. Thus, the Gly/Ala ratio can be customized by controlling the presence of brushite on the surface of the catalyst, enabling to develop new strategies to regulate the production of amino acids by nitrogen and carbon fixation. (C) 2021 Elsevier Inc. All rights reserved.

JTD Keywords: Amino acids, Brushite, Carbon, Carbon dioxide fixation, Catalyst activity, Catalytic apatites, Chemical precipitation, Crystalline hydroxyapatite, Crystallinity, Decomposition, Enhanced catalytic activity, Experimental conditions, Heterogeneous catalysis, High crystallinity, Hydrothermal synthesis, Hydrothermal treatments, Hydroxyapatite, Lactic-acid, Mild reaction conditions, Molecular nitrogen fixation, Nitrogen, Nitrogen fixation, Phosphate, Polarization, Precipitation (chemical), Process parameters, Thermally stimulated polarization