by Keyword: Integrin activation
Lolo, FN, Pavón, DM, Grande, A, Artola, AE, Segatori, VI, Sánchez, S, Trepat, X, Roca-Cusachs, P, del Pozo, MA, (2022). Caveolae couple mechanical stress to integrin recycling and activation Elife 11, e82348
Cells are subjected to multiple mechanical inputs throughout their lives. Their ability to detect these environmental cues is called mechanosensing, a process in which integrins play an important role. During cellular mechanosensing, plasma membrane (PM) tension is adjusted to mechanical stress through the buffering action of caveolae; however, little is known about the role of caveolae in early integrin mechanosensing regulation. Here, we show that Cav1KO fibroblasts increase adhesion to FN-coated beads when pulled with magnetic tweezers, as compared to wild type fibroblasts. This phenotype is Rho-independent and mainly derived from increased active b1-integrin content on the surface of Cav1KO fibroblasts. FRAP analysis and endocytosis/recycling assays revealed that active b1-integrin is mostly endocytosed through the CLIC/GEEC pathway and is more rapidly recycled to the PM in Cav1KO fibroblasts, in a Rab4 and PM tension-dependent manner. Moreover, the threshold for PM tension-driven b1-integrin activation is lower in Cav1KO MEFs than in wild type MEFs, through a mechanism dependent on talin activity. Our findings suggest that caveolae couple mechanical stress to integrin cycling and activation, thereby regulating the early steps of the cellular mechanosensing response.© 2022, Lolo et al.
JTD Keywords: adhesion, alpha-v-beta-3, cell, integrin activation, internalization, kinase, mechanosensing, mediated endocytosis, mouse, stiffness, talin, trafficking, Animals, Caveolae, Cell adhesion, Cell biology, Fibroblasts, Integrin activation, Integrin beta1, Integrin recycling, Integrins, Mechanosensing, Membrane tension, Mice, Mouse, Stress, mechanical