DONATE

Publications

by Keyword: Integrin beta1

Dhawan, U, Williams, JA, Windmill, JFC, Childs, P, Gonzalez-Garcia, C, Dalby, MJ, Salmeron-Sanchez, M, (2024). Engineered Surfaces That Promote Capture of Latent Proteins to Facilitate Integrin-Mediated Mechanical Activation of Growth Factors Advanced Materials 36, 2310789

Conventional osteogenic platforms utilize active growth factors to repair bone defects that are extensive in size, but they can adversely affect patient health. Here, an unconventional osteogenic platform is reported that functions by promoting capture of inactive osteogenic growth factor molecules to the site of cell growth for subsequent integrin-mediated activation, using a recombinant fragment of latent transforming growth factor beta-binding protein-1 (rLTBP1). It is shown that rLTBP1 binds to the growth-factor- and integrin-binding domains of fibronectin on poly(ethyl acrylate) surfaces, which immobilizes rLTBP1 and promotes the binding of latency associated peptide (LAP), within which inactive transforming growth factor beta 1 (TGF-beta 1) is bound. rLTBP1 facilitates the interaction of LAP with integrin beta 1 and the subsequent mechanically driven release of TGF-beta 1 to stimulate canonical TGF-beta 1 signaling, activating osteogenic marker expression in vitro and complete regeneration of a critical-sized bone defect in vivo. An osteogenic platform that functions by capturing inactive growth factor molecules is engineered to overcome conventional challenges associated with the use of active growth factors. The platform triggers capture of inactive transforming growth factor beta-1 for its subsequent integrin-mediated activation which activates osteogenic downstream signaling in vitro and fully repairs critical-sized bone defect in vivo. image

JTD Keywords: Animals, Bone, Bone defect, Bone regeneration, Cell proliferation, Cells, Chemical activation, Defects, Differentiation, Fibronectin, Fibronectins, Growth factor, Growth factors, Humans, Integrin beta1, Integrins, Latency associated peptides, Latent tgf-beta binding proteins, Ltbp1, Osteogenesis, Osteogenic, Protein binding, Recombinant proteins, Release, Repair, Signal transduction, Surface properties, Tgf-beta, Tgf-β1, Transforming growth factor beta1, Transforming growth factors


Lolo, FN, Pavón, DM, Grande, A, Artola, AE, Segatori, VI, Sánchez, S, Trepat, X, Roca-Cusachs, P, del Pozo, MA, (2022). Caveolae couple mechanical stress to integrin recycling and activation Elife 11, e82348

Cells are subjected to multiple mechanical inputs throughout their lives. Their ability to detect these environmental cues is called mechanosensing, a process in which integrins play an important role. During cellular mechanosensing, plasma membrane (PM) tension is adjusted to mechanical stress through the buffering action of caveolae; however, little is known about the role of caveolae in early integrin mechanosensing regulation. Here, we show that Cav1KO fibroblasts increase adhesion to FN-coated beads when pulled with magnetic tweezers, as compared to wild type fibroblasts. This phenotype is Rho-independent and mainly derived from increased active b1-integrin content on the surface of Cav1KO fibroblasts. FRAP analysis and endocytosis/recycling assays revealed that active b1-integrin is mostly endocytosed through the CLIC/GEEC pathway and is more rapidly recycled to the PM in Cav1KO fibroblasts, in a Rab4 and PM tension-dependent manner. Moreover, the threshold for PM tension-driven b1-integrin activation is lower in Cav1KO MEFs than in wild type MEFs, through a mechanism dependent on talin activity. Our findings suggest that caveolae couple mechanical stress to integrin cycling and activation, thereby regulating the early steps of the cellular mechanosensing response.© 2022, Lolo et al.

JTD Keywords: adhesion, alpha-v-beta-3, cell, integrin activation, internalization, kinase, mechanosensing, mediated endocytosis, mouse, stiffness, talin, trafficking, Animals, Caveolae, Cell adhesion, Cell biology, Fibroblasts, Integrin activation, Integrin beta1, Integrin recycling, Integrins, Mechanosensing, Membrane tension, Mice, Mouse, Stress, mechanical