DONATE

Publications

by Keyword: Kidney disease

Liu, M, Zhang, C, Gong, XM, Zhang, T, Lian, MM, Chew, EGY, Cardilla, A, Suzuki, K, Wang, HM, Yuan, Y, Li, Y, Naik, MY, Wang, YX, Zhou, BR, Soon, WZ, Aizawa, E, Li, P, Low, JH, Tandiono, M, Montagud, E, Moya-Rull, D, Esteban, CR, Luque, Y, Fang, ML, Khor, CC, Montserrat, N, Campistol, JM, Belmonte, JCI, Foo, JN, Xia, Y, (2024). Kidney organoid models reveal cilium-autophagy metabolic axis as a therapeutic target for PKD both in vitro and in vivo Cell Stem Cell 31, 52-70.e8

Human pluripotent stem cell -derived kidney organoids offer unprecedented opportunities for studying polycystic kidney disease (PKD), which still has no effective cure. Here, we developed both in vitro and in vivo organoid models of PKD that manifested tubular injury and aberrant upregulation of renin-angiotensin aldosterone system. Single -cell analysis revealed that a myriad of metabolic changes occurred during cystogenesis, including defective autophagy. Experimental activation of autophagy via ATG5 overexpression or primary cilia ablation significantly inhibited cystogenesis in PKD kidney organoids. Employing the organoid xenograft model of PKD, which spontaneously developed tubular cysts, we demonstrate that minoxidil, a potent autophagy activator and an FDA -approved drug, effectively attenuated cyst formation in vivo. This in vivo organoid model of PKD will enhance our capability to discover novel disease mechanisms and validate candidate drugs for clinical translation.

JTD Keywords: Adenylate kinase, Adult, Animal cell, Animal experiment, Animal model, Animal tissue, Article, Autophagosome, Autophagy, Autophagy (cellular), Autosomal-dominant, Calcium homeostasis, Cilia, Cilium, Cohort analysis, Controlled study, Cyclic amp, Disease, Dominant polycystic kidney, Enzyme linked immunosorbent assay, Epithelium, Exon, Expression, Female, Food and drug administration, Framework, Generation, Growth, Hepatitis a virus cellular receptor 1, Human, Human cell, Humans, Immunohistochemistry, In vitro study, In vivo study, Kidney, Kidney organoid, Kidney polycystic disease, Male, Minoxidil, Mouse, Mutations, Nonhuman, Organoid, Organoids, Platelet derived growth factor beta receptor, Pluripotent stem-cells, Polycystic kidney diseases, Protein kinase lkb1, Renin, Sequestosome 1, Single cell analysis, Single cell rna seq, Small nuclear rna, Tunel assay, Upregulation, Western blotting, Whole exome sequencing


Dhillon, P, Park, J, del Pozo, CH, Li, LZ, Doke, T, Huang, SZ, Zhao, JJ, Kang, HM, Shrestra, R, Balzer, MS, Chatterjee, S, Prado, P, Han, SY, Liu, HB, Sheng, X, Dierickx, P, Batmanov, K, Romero, JP, Prósper, F, Li, MY, Pei, LM, Kim, J, Montserrat, N, Susztak, K, (2021). The Nuclear Receptor ESRRA Protects from Kidney Disease by Coupling Metabolism and Differentiation Cell Metabolism 33, 379-394.e8

© 2020 Elsevier Inc. Using single-cell RNA sequencing, Susztak and colleagues, show major changes in cell diversity in mouse models of kidney fibrosis. Proximal tubule (PT) cells are highly vulnerable to dysfunction in fibrosis and show altered differentiation. Nuclear receptors such as ESRRA maintain both PT cell metabolism and differentiation by directly regulating PT-cell-specific genes.

JTD Keywords: chronic kidney disease, esrra, fatty-acid oxidation, fibrosis, kidney, organoids, ppara, proximal tubule cells, single-cell atac sequencing, Chronic kidney disease, Esrra, Fatty-acid oxidation, Fibrosis, Kidney, Organoids, Ppara, Proximal tubule cells, Single-cell atac sequencing, Single-cell rna sequencing


Montserrat, N., Garreta, E., Izpisua Belmonte, J. C., (2016). Regenerative strategies for kidney engineering FEBS Journal , 283, (18), 3303-3324

The kidney is the most important organ for water homeostasis and waste excretion. It performs several important physiological functions for homeostasis: it filters the metabolic waste out of circulation, regulates body fluid balances, and acts as an immune regulator and modulator of cardiovascular physiology. The development of in vitro renal disease models with pluripotent stem cells (both human embryonic stem cells and induced pluripotent stem cells) and the generation of robust protocols for in vitro derivation of renal-specific-like cells from patient induced pluripotent stem cells have just emerged. Here we review major findings in the field of kidney regeneration with a major focus on the development of stepwise protocols for kidney cell production from human pluripotent stem cells and the latest advances in kidney bioengineering (i.e. decellularized kidney scaffolds and bioprinting). The possibility of generating renal-like three-dimensional structures to be recellularized with renal-derived induced pluripotent stem cells may offer new avenues to develop functional kidney grafts on-demand.

JTD Keywords: Induced pluripotent stem cells, Kidney disease, Kidney engineering, Pluripotent stem cells, Renal differentiation