by Keyword: Organoid
Garreta, Elena, Moya-Rull, Daniel, Marco, Andres, Amato, Gaia, Ullate-Agote, Asier, Tarantino, Carolina, Gallo, Maria, Esporrin-Ubieto, David, Centeno, Alberto, Vilas-Zornoza, Amaia, Mestre, Rafael, Kalil, Maria, Gorronogoitia, Izar, Zaldua, Ane Miren, Sanchez, Samuel, Reyes, Laura Izquierdo, Fernandez-Santos, Maria Eugenia, Prosper, Felipe, Montserrat, Nuria, (2024). Natural Hydrogels Support Kidney Organoid Generation and Promote In Vitro Angiogenesis Advanced Materials , 2400306
To date, strategies aiming to modulate cell to extracellular matrix (ECM) interactions during organoid derivation remain largely unexplored. Here renal decellularized ECM (dECM) hydrogels are fabricated from porcine and human renal cortex as biomaterials to enrich cell-to-ECM crosstalk during the onset of kidney organoid differentiation from human pluripotent stem cells (hPSCs). Renal dECM-derived hydrogels are used in combination with hPSC-derived renal progenitor cells to define new approaches for 2D and 3D kidney organoid differentiation, demonstrating that in the presence of these biomaterials the resulting kidney organoids exhibit renal differentiation features and the formation of an endogenous vascular component. Based on these observations, a new method to produce kidney organoids with vascular-like structures is achieved through the assembly of hPSC-derived endothelial-like organoids with kidney organoids in 3D. Major readouts of kidney differentiation and renal cell morphology are assessed exploiting these culture platforms as new models of nephrogenesis. Overall, this work shows that exploiting cell-to-ECM interactions during the onset of kidney differentiation from hPSCs facilitates and optimizes current approaches for kidney organoid derivation thereby increasing the utility of these unique cell culture platforms for personalized medicine. Natural hydrogels derived from decellularized porcine or human kidney tissues are used to generate kidney organoids from human pluripotent stem cells, resulting in the enrichment of organoids' endogenous vascular component and improved renal differentiation. Exploiting the autonomous capacity of kidney organoids to exhibit endogenous vascularization in combination with these biomaterials, a novel approach is established to generate endothelial-kidney assembloids showing vascular-like structures. image
JTD Keywords: Assembloids, Extracellular matrix-derived hydrogels, Extracellular-matrix, Human pluripotent stem cells, Kidney organoids, Pluripotent stem-cells, Tissu, Vascularizatio
Pahuja, A, Corredera, IG, Moya-Rull, D, Garreta, E, Montserrat, N, (2024). Engineering physiological environments to advance kidney organoid models from human pluripotent stem cells Current Opinion In Cell Biology 86, 102306
During embryogenesis, the mammalian kidney arises because of reciprocal interactions between the ureteric bud (UB) and the metanephric mesenchyme (MM), driving UB branching and nephron induction. These morphogenetic processes involve a series of cellular rearrangements that are tightly controlled by gene regulatory networks and signaling cascades. Here, we discuss how kidney developmental studies have informed the definition of procedures to obtain kidney organoids from human pluripotent stem cells (hPSCs). Moreover, bioengineering techniques have emerged as potential solutions to externally impose controlled microenvironments for organoid generation from hPSCs. Next, we summarize some of these advances with major focus On recent works merging hPSC-derived kidney organoids (hPSC-kidney organoids) with organ-on-chip to develop robust models for drug discovery and disease modeling applications. We foresee that, in the near future, coupling of different organoid models through bioengineering approaches will help advancing to recreate organ-to-organ crosstalk to increase our understanding on kidney disease progression in the human context and search for new therapeutics.Copyright © 2023 The Authors. Published by Elsevier Ltd.. All rights reserved.
JTD Keywords: Animal, Animals, Bioengineering, Cell differentiation, Embryo development, Embryology, Embryonic structures, Gene regulatory network, Human, Humans, Kidney, Kidney development, Kidney mesenchyme cell, Kidney organoid, Mammal, Mammals, Mesenchyme, Metanephric mesenchyme, Microenvironment, Nephron, Nephrons, Organoid, Organoids, Physiology, Pluripotent stem cell, Pluripotent stem cells, Review, Signal transduction, Ureteric bud
Liu, M, Zhang, C, Gong, XM, Zhang, T, Lian, MM, Chew, EGY, Cardilla, A, Suzuki, K, Wang, HM, Yuan, Y, Li, Y, Naik, MY, Wang, YX, Zhou, BR, Soon, WZ, Aizawa, E, Li, P, Low, JH, Tandiono, M, Montagud, E, Moya-Rull, D, Esteban, CR, Luque, Y, Fang, ML, Khor, CC, Montserrat, N, Campistol, JM, Belmonte, JCI, Foo, JN, Xia, Y, (2024). Kidney organoid models reveal cilium-autophagy metabolic axis as a therapeutic target for PKD both in vitro and in vivo Cell Stem Cell 31, 52-70.e8
Human pluripotent stem cell -derived kidney organoids offer unprecedented opportunities for studying polycystic kidney disease (PKD), which still has no effective cure. Here, we developed both in vitro and in vivo organoid models of PKD that manifested tubular injury and aberrant upregulation of renin-angiotensin aldosterone system. Single -cell analysis revealed that a myriad of metabolic changes occurred during cystogenesis, including defective autophagy. Experimental activation of autophagy via ATG5 overexpression or primary cilia ablation significantly inhibited cystogenesis in PKD kidney organoids. Employing the organoid xenograft model of PKD, which spontaneously developed tubular cysts, we demonstrate that minoxidil, a potent autophagy activator and an FDA -approved drug, effectively attenuated cyst formation in vivo. This in vivo organoid model of PKD will enhance our capability to discover novel disease mechanisms and validate candidate drugs for clinical translation.
JTD Keywords: Adenylate kinase, Adult, Animal cell, Animal experiment, Animal model, Animal tissue, Article, Autophagosome, Autophagy, Autophagy (cellular), Autosomal-dominant, Calcium homeostasis, Cilia, Cilium, Cohort analysis, Controlled study, Cyclic amp, Disease, Dominant polycystic kidney, Enzyme linked immunosorbent assay, Epithelium, Exon, Expression, Female, Food and drug administration, Framework, Generation, Growth, Hepatitis a virus cellular receptor 1, Human, Human cell, Humans, Immunohistochemistry, In vitro study, In vivo study, Kidney, Kidney organoid, Kidney polycystic disease, Male, Minoxidil, Mouse, Mutations, Nonhuman, Organoid, Organoids, Platelet derived growth factor beta receptor, Pluripotent stem-cells, Polycystic kidney diseases, Protein kinase lkb1, Renin, Sequestosome 1, Single cell analysis, Single cell rna seq, Small nuclear rna, Tunel assay, Upregulation, Western blotting, Whole exome sequencing
Nauryzgaliyeva, Z, Corredera, IG, Garreta, E, Montserrat, N, (2023). Harnessing mechanobiology for kidney organoid research Frontiers In Cell And Developmental Biology 11, 1273923
Recently, organoids have emerged as revolutionizing tools with the unprecedented potential to recreate organ-specific microanatomy in vitro. Upon their derivation from human pluripotent stem cells (hPSCs), organoids reveal the blueprints of human organogenesis, further allowing the faithful recapitulation of their physiology. Nevertheless, along with the evolution of this field, advanced research exposed the organoids' shortcomings, particularly regarding poor reproducibility rates and overall immatureness. To resolve these challenges, many studies have started to underscore the relevance of mechanical cues as a relevant source to induce and externally control hPSCs differentiation. Indeed, established organoid generation protocols from hPSCs have mainly relyed on the biochemical induction of fundamental signalling pathways present during kidney formation in mammals, whereas mechanical cues have largely been unexplored. This review aims to discuss the pertinence of (bio) physical cues within hPSCs-derived organoid cultures, while deciphering their effect on morphogenesis. Moreover, we will explore state-of-the-art mechanobiology techniques as revolutionizing means for understanding the underlying role of mechanical forces in biological processes in organoid model systems.
JTD Keywords: development, hpscs, mechanobiology, nephrogenesis, Activated ion-channel, Development, Extracellular-matrix viscoelasticity, Forces, Hpscs, Ips cells, Mechanical regulation, Mechanobiology, Nephrogenesis, Nephron progenitors, Organoids, Pluripotent stem-cells, Self-renewal, Substrate mechanics, Tissue
Pereira, Ines, Lopez-Martinez, Maria J, Samitier, Josep, (2023). Advances in current in vitro models on neurodegenerative diseases Frontiers In Bioengineering And Biotechnology 11, 1260397
Many neurodegenerative diseases are identified but their causes and cure are far from being well-known. The problem resides in the complexity of the neural tissue and its location which hinders its easy evaluation. Although necessary in the drug discovery process, in vivo animal models need to be reduced and show relevant differences with the human tissues that guide scientists to inquire about other possible options which lead to in vitro models being explored. From organoids to organ-on-a-chips, 3D models are considered the cutting-edge technology in cell culture. Cell choice is a big parameter to take into consideration when planning an in vitro model and cells capable of mimicking both healthy and diseased tissue, such as induced pluripotent stem cells (iPSC), are recognized as good candidates. Hence, we present a critical review of the latest models used to study neurodegenerative disease, how these models have evolved introducing microfluidics platforms, 3D cell cultures, and the use of induced pluripotent cells to better mimic the neural tissue environment in pathological conditions.
JTD Keywords: 3d in vitro models, bioprinting, ipsc cell culture, microfluidic device, 3d in vitro models, Bioprinting, Blood-brain-barrier, Cerebral organoids, Culture model, Endothelial-cells, Expression profile, Extracellular-matrix, Ipsc cell culture, Microfluidic device, Neurodegenerative diseases, On-a-chip, Pluripotent stem-cells, Shear-stress, Substrate stiffness
Villasante, A, Martinez, MJL, Alcon, C, Lizarribar, AG, Samitier, J, (2023). Bioengineering approaches to recapitulate the alternative vasculature in neuroblastoma Tissue Engineering Part a 29, OP-018
Ramon, J, Costae, JMF, Comas, JR, Muñoz, GL, Yeste, J, Florencio, LM, Gonzalez, MF, Lasierra, EM, Villafranca, AT, Ortega, MA, (2023). Training-on-a-Chip: a multi-organ device to study the effect of muscle exercise on insulin secretion in vitro Tissue Engineering Part a 29, OP‐290
Castano, O, Canosa, AL, Noguera, A, Torres, JF, Amodio, SP, Machado, AH, Engel, E, (2023). A versatile organ-on-a-chip model for the evaluation of proangiogenic biomaterials Tissue Engineering Part a 29, PP-377
Garreta, E, Moya-Rull, D, Stanifer, ML, Monteil, V, Prado, P, Marco, A, Tarantino, C, Gallo, M, Jonsson, G, Hagelkruys, A, Mirazimi, A, Boulant, S, Penninger, JM, Montserrat, N, (2022). Protocol for SARS-CoV-2 infection of kidney organoids derived from human pluripotent stem cells Star Protocols 3, 101872
This protocol presents the use of SARS-CoV-2 isolates to infect human kidney organoids, enabling exploration of the impact of SARS-CoV-2 infection in a human multicellular in vitro system. We detail steps to generate kidney organoids from human pluripotent stem cells (hPSCs) and emulate a diabetic milieu via organoids exposure to diabetogenic-like cell culture conditions. We further describe preparation and titration steps of SARS-CoV-2 virus stocks, their subsequent use to infect the kidney organoids, and assessment of the infection via immunofluorescence.
JTD Keywords: cell culture, cell differentiation, microbiology, microscopy, organoids, Cell culture, Microbiología, Microscopy, Stem cells
Cable, J, Arlotta, P, Parker, KK, Hughes, AJ, Goodwin, K, Mummery, CL, Kamm, RD, Engle, SJ, Tagle, DA, Boj, SF, Stanton, AE, Morishita, Y, Kemp, ML, Norfleet, DA, May, EE, Lu, A, Bashir, R, Feinberg, AW, Hull, SM, Gonzalez, AL, Blatchley, MR, Pulido, NM, Morizane, R, McDevitt, TC, Mishra, D, Mulero-Russe, A, (2022). Engineering multicellular living systems-A Keystone Symposia report Annals Of The New York Academy Of Sciences 1518, 183-195
The ability to engineer complex multicellular systems has enormous potential to inform our understanding of biological processes and disease and alter the drug development process. Engineering living systems to emulate natural processes or to incorporate new functions relies on a detailed understanding of the biochemical, mechanical, and other cues between cells and between cells and their environment that result in the coordinated action of multicellular systems. On April 3-6, 2022, experts in the field met at the Keystone symposium "Engineering Multicellular Living Systems" to discuss recent advances in understanding how cells cooperate within a multicellular system, as well as recent efforts to engineer systems like organ-on-a-chip models, biological robots, and organoids. Given the similarities and common themes, this meeting was held in conjunction with the symposium "Organoids as Tools for Fundamental Discovery and Translation".
JTD Keywords: computational, engineered living, engineered organs, multicellular, Brain organoids, Cell diversity, Computational, Dynamics, Engineered living, Engineered organs, Heart, Maturation, Model, Multicellular, Mycobacterium-tuberculosis, Quantitative-analysis, Systems, Tissue deformation
Larrañaga, E, Fernández-Majada, V, Ojosnegros, S, Comelles, J, Martinez, E, (2022). Ephrin Micropatterns Exogenously Modulate Cell Organization in Organoid‐Derived Intestinal Epithelial Monolayers Advanced Materials Interfaces 9, 2201301
JTD Keywords: adhesion, attachment, growth, ligands, membrane, microcontact printing, migration, organoid-derived intestinal epithelia, receptor, tissue organization, Eph-ephrin, Stem-cells
Altay, Gizem, Abad-Lazaro, Aina, Gualda, Emilio J, Folch, Jordi, Insa, Claudia, Tosi, Sebastien, Hernando-Momblona, Xavier, Batlle, Eduard, Loza-Alvarez, Pablo, Fernandez-Majada, Vanesa, Martinez, Elena, (2022). Modeling Biochemical Gradients In Vitro to Control Cell Compartmentalization in a Microengineered 3D Model of the Intestinal Epithelium Advanced Healthcare Materials 11, 2201172
Gradients of signaling pathways within the intestinal stem cell (ISC) niche are instrumental for cellular compartmentalization and tissue function, yet how are they sensed by the epithelium is still not fully understood. Here a new in vitro model of the small intestine based on primary epithelial cells (i), apically accessible (ii), with native tissue mechanical properties and controlled mesh size (iii), 3D villus-like architecture (iv), and precisely controlled biomolecular gradients of the ISC niche (v) is presented. Biochemical gradients are formed through hydrogel-based scaffolds by free diffusion from a source to a sink chamber. To confirm the establishment of spatiotemporally controlled gradients, light-sheet fluorescence microscopy and in-silico modeling are employed. The ISC niche biochemical gradients coming from the stroma and applied along the villus axis lead to the in vivo-like compartmentalization of the proliferative and differentiated cells, while changing the composition and concentration of the biochemical factors affects the cellular organization along the villus axis. This novel 3D in vitro intestinal model derived from organoids recapitulates both the villus-like architecture and the gradients of ISC biochemical factors, thus opening the possibility to study in vitro the nature of such gradients and the resulting cellular response.© 2022 The Authors. Advanced Healthcare Materials published by Wiley-VCH GmbH.
JTD Keywords: 3d architectures, biomolecular gradients, colon, crypt, engineering organoids, hydrogels, identification, in silico modeling, intestinal stem cell niches, light sheet fluorescence microscopy, niche, permeability, photolithography, regeneration, villus, wnt, 3d architectures, Biomolecular gradients, Engineering organoids, In silico modeling, Intestinal stem cell niches, Light sheet fluorescence microscopy, Photolithography, Stem-cell
Safi, W, Marco, A, Moya, D, Prado, P, Garreta, E, Montserrat, N, (2022). Assessing kidney development and disease using kidney organoids and CRISPR engineering Frontiers In Cell And Developmental Biology 10, 948395
The differentiation of human pluripotent stem cells (hPSCs) towards organoids is one of the biggest scientific advances in regenerative medicine. Kidney organoids have not only laid the groundwork for various organ-like tissue systems but also provided insights into kidney embryonic development. Thus, several protocols for the differentiation of renal progenitors or mature cell types have been established. Insights into the interplay of developmental pathways in nephrogenesis and determination of different cell fates have enabled the in vitro recapitulation of nephrogenesis. Here we first provide an overview of kidney morphogenesis and patterning in the mouse model in order to dissect signalling pathways that are key to define culture conditions sustaining renal differentiation from hPSCs. Secondly, we also highlight how genome editing approaches have provided insights on the specific role of different genes and molecular pathways during renal differentiation from hPSCs. Based on this knowledge we further review how CRISPR/Cas9 technology has enabled the recapitulation and correction of cellular phenotypes associated with human renal disease. Last, we also revise how the field has positively benefited from emerging technologies as single cell RNA sequencing and discuss current limitations on kidney organoid technology that will take advantage from bioengineering solutions to help standardizing the use of this model systems to study kidney development and disease.Copyright © 2022 Safi, Marco, Moya, Prado, Garreta and Montserrat.
JTD Keywords: crispr, directed differentiation, epithelial-cells, expression, kidney engineering, kidney organoids, model, mouse, nephrogenesis, nephron number, podocytes, progenitor, Crispr, Kidney engineering, Kidney organoids, Nephrogenesis, Pluripotent stem cells, Pluripotent stem-cells
Sharma, K, Uraji, J, Ammar, OF, Ali, ZE, Liperis, G, Modi, D, Ojosnegros, S, Shahbazi, MN, Fraire-Zamora, JJ, (2022). #ESHREjc report: renewing the old: novel stem cell research for unsolved ART problems Human Reproduction 37, 2224-2227
Garreta, E, Prado, P, Stanifer, ML, Monteil, V, Marco, A, Ullate-Agote, A, Moya-Rull, D, Vilas-Zornoza, A, Tarantino, C, Romero, JP, Jonsson, G, Oria, R, Leopoldi, A, Hagelkruys, A, Gallo, M, González, F, Domingo-Pedrol, P, Gavaldà, A, del Pozo, CH, Ali, OH, Ventura-Aguiar, P, Campistol, JM, Prosper, F, Mirazimi, A, Boulant, S, Penninger, JM, Montserrat, N, (2022). A diabetic milieu increases ACE2 expression and cellular susceptibility to SARS-CoV-2 infections in human kidney organoids and patient cells Cell Metabolism 34, 857-873
It is not well understood why diabetic individuals are more prone to develop severe COVID-19. To this, we here established a human kidney organoid model promoting early hallmarks of diabetic kidney disease development. Upon SARS-CoV-2 infection, diabetic-like kidney organoids exhibited higher viral loads compared with their control counterparts. Genetic deletion of the angiotensin-converting enzyme 2 (ACE2) in kidney organoids under control or diabetic-like conditions prevented viral detection. Moreover, cells isolated from kidney biopsies from diabetic patients exhibited altered mitochondrial respiration and enhanced glycolysis, resulting in higher SARS-CoV-2 infections compared with non-diabetic cells. Conversely, the exposure of patient cells to dichloroacetate (DCA), an inhibitor of aerobic glycolysis, resulted in reduced SARS-CoV-2 infections. Our results provide insights into the identification of diabetic-induced metabolic programming in the kidney as a critical event increasing SARS-CoV-2 infection susceptibility, opening the door to the identification of new interventions in COVID-19 pathogenesis targeting energy metabolism.Copyright © 2022 The Authors. Published by Elsevier Inc. All rights reserved.
JTD Keywords: complications, coronavirus, cultured-cells, disease, distal tubule, mouse, protein, reveals, spike, Ace2, Angiotensin-converting enzyme 2, Angiotensin-converting enzyme-2, Covid-19, Diabetes 2, Human kidney organoids, Sars-cov-2
Bonilla-Pons, SA, Nakagawa, S, Bahima, EG, Fernández-Blanco, A, Pesaresi, M, D'Antin, JC, Sebastian-Perez, R, Greco, D, Domínguez-Sala, E, Gómez-Riera, R, Compte, RIB, Dierssen, M, Pulido, NM, Cosma, MP, (2022). Müller glia fused with adult stem cells undergo neural differentiation in human retinal models Ebiomedicine 77, 103914
Visual impairments are a critical medical hurdle to be addressed in modern society. Müller glia (MG) have regenerative potential in the retina in lower vertebrates, but not in mammals. However, in mice, in vivo cell fusion between MG and adult stem cells forms hybrids that can partially regenerate ablated neurons.We used organotypic cultures of human retina and preparations of dissociated cells to test the hypothesis that cell fusion between human MG and adult stem cells can induce neuronal regeneration in human systems. Moreover, we established a microinjection system for transplanting human retinal organoids to demonstrate hybrid differentiation.We first found that cell fusion occurs between MG and adult stem cells, in organotypic cultures of human retina as well as in cell cultures. Next, we showed that the resulting hybrids can differentiate and acquire a proto-neural electrophysiology profile when the Wnt/beta-catenin pathway is activated in the adult stem cells prior fusion. Finally, we demonstrated the engraftment and differentiation of these hybrids into human retinal organoids.We show fusion between human MG and adult stem cells, and demonstrate that the resulting hybrid cells can differentiate towards neural fate in human model systems. Our results suggest that cell fusion-mediated therapy is a potential regenerative approach for treating human retinal dystrophies.This work was supported by La Caixa Health (HR17-00231), Velux Stiftung (976a) and the Ministerio de Ciencia e Innovación, (BFU2017-86760-P) (AEI/FEDER, UE), AGAUR (2017 SGR 689, 2017 SGR 926).Published by Elsevier B.V.
JTD Keywords: cell fusion, expression, fusion, ganglion-cells, in-vitro, mouse, müller glia, neural differentiation, organoids, regeneration, retina regeneration, stem cells, stromal cells, transplantation, 4',6 diamidino 2 phenylindole, 5' nucleotidase, Agarose, Alcohol, Arpe-19 cell line, Article, Beta catenin, Beta tubulin, Bone-marrow-cells, Bromophenol blue, Buffer, Calcium cell level, Calcium phosphate, Calretinin, Canonical wnt signaling, Cd34 antigen, Cell culture, Cell fusion, Cell viability, Coculture, Complementary dna, Confocal microscopy, Cornea transplantation, Cryopreservation, Cryoprotection, Crystal structure, Current clamp technique, Dimethyl sulfoxide, Dodecyl sulfate sodium, Edetic acid, Electrophysiology, Endoglin, Fetal bovine serum, Fibroblast growth factor 2, Flow cytometry, Fluorescence activated cell sorting, Fluorescence intensity, Glyceraldehyde 3 phosphate dehydrogenase, Glycerol, Glycine, Hoe 33342, Immunofluorescence, Immunohistochemistry, Incubation time, Interleukin 1beta, Lentivirus vector, Matrigel, Mercaptoethanol, Microinjection, Mueller cell, Müller glia, N methyl dextro aspartic acid, Nerve cell differentiation, Neural differentiation, Nitrogen, Nonhuman, Organoids, Paraffin, Paraffin embedding, Paraformaldehyde, Patch clamp technique, Penicillin derivative, Phenolsulfonphthalein, Phenotype, Phosphate buffered saline, Phosphoprotein phosphatase inhibitor, Polyacrylamide gel electrophoresis, Potassium chloride, Povidone iodine, Promoter region, Proteinase inhibitor, Real time polymerase chain reaction, Receptor type tyrosine protein phosphatase c, Restriction endonuclease, Retina, Retina dystrophy, Retina regeneration, Retinol, Rhodopsin, Rna extraction, Stem cell, Stem cells, Subcutaneous fat, Tunel assay, Visual impairment, Western blotting
Pérez-González, C, Ceada, G, Matejcic, M, Trepat, X, (2022). Digesting the mechanobiology of the intestinal epithelium Current Opinion In Genetics & Development 72, 82-90
The dizzying life of the homeostatic intestinal epithelium is governed by a complex interplay between fate, form, force and function. This interplay is beginning to be elucidated thanks to advances in intravital and ex vivo imaging, organoid culture, and biomechanical measurements. Recent discoveries have untangled the intricate organization of the forces that fold the monolayer into crypts and villi, compartmentalize cell types, direct cell migration, and regulate cell identity, proliferation and death. These findings revealed that the dynamic equilibrium of the healthy intestinal epithelium relies on its ability to precisely coordinate tractions and tensions in space and time. In this review, we discuss recent findings in intestinal mechanobiology, and highlight some of the many fascinating questions that remain to be addressed in this emerging field.Copyright © 2021 The Author(s). Published by Elsevier Ltd.. All rights reserved.
JTD Keywords: crypt fission, designer matrices, differentiation, growth, gut, migration, model, scaffold, tissue mechanics, Biophysics, Cell migration, Cell movement, Cell proliferation, Ex vivo study, Human tissue, Intestinal mucosa, Intestine epithelium, Monolayer culture, Organoid, Organoids, Review, Stem-cell, Tension, Traction therapy
Villacampa, EG, Larsson, L, Mirzazadeh, R, Kvastad, L, Andersson, A, Mollbrink, A, Kokaraki, G, Monteil, V, Schultz, N, Appelberg, KS, Montserrat, N, Zhang, HB, Penninger, JM, Miesbach, W, Mirazimi, A, Carlson, J, Lundeberg, J, (2021). Genome-wide spatial expression profiling in formalin-fixed tissues Cell Genom 1, 100065
Formalin-fixed paraffin embedding (FFPE) is the most widespread long-term tissue preservation approach. Here, we report a procedure to perform genome-wide spatial analysis of mRNA in FFPE-fixed tissue sections, using well-established, commercially available methods for imaging and spatial barcoding using slides spotted with barcoded oligo(dT) probes to capture the 3' end of mRNA molecules in tissue sections. We applied this method for expression profiling and cell type mapping in coronal sections from the mouse brain to demonstrate the method's capability to delineate anatomical regions from a molecular perspective. We also profiled the spatial composition of transcriptomic signatures in two ovarian carcinosarcoma samples, exemplifying the method's potential to elucidate molecular mechanisms in heterogeneous clinical samples. Finally, we demonstrate the applicability of the assay to characterize human lung and kidney organoids and a human lung biopsy specimen infected with SARS-CoV-2. We anticipate that genome-wide spatial gene expression profiling in FFPE biospecimens will be used for retrospective analysis of biobank samples, which will facilitate longitudinal studies of biological processes and biomarker discovery.© 2021 The Authors.
JTD Keywords: colonic transit, gut, intestinal motility, ld score regression, metaanalysis, nervous-system, neurotrophic factor, population, severity, Covid-19, Ffpe, Genome-wide, Irritable-bowel-syndrome, Mouse brain, Organoids, Ovarian carcinosarcoma, Pfa, Sars-cov-2, Spatial transcriptomics, Visium
Garreta, E, Nauryzgaliyeva, Z, Montserrat, N, (2021). Human induced pluripotent stem cell-derived kidney organoids toward clinical implementations Curr Opin Biomed Eng 20, 100346
The generation of kidney organoids from human pluripotent stem cells (hPSCs) has represented a relevant scientific achievement in the organoid field. Importantly, hPSC-derived kidney organoids contain multiple nephron-like structures that exhibit some renal functional characteristics and have the capacity to respond to nephrotoxic agents. In this review, we first discuss how bioengineering approaches can help overcome current kidney organoid challenges. Next, we focus on recent works exploiting kidney organoids for drug screening and disease modeling applications. Finally, we provide a state of the art on current research toward the potential application of kidney organoids and renal cells derived from hPSCs for future renal replacement therapies.
JTD Keywords: Bioengineering, Converting enzyme-ii, Crispr/cas9 gene editing, Disease, Disease modeling, Extracellular-matrix, Generation, Human pluripotent stem cells, Kidney organoids, Kidney regeneration, Model, Mouse, Reveals, Scaffold, Transplantation
Berishvili, E, Casiraghi, F, Amarelli, C, Scholz, H, Piemonti, L, Berney, T, Montserrat, N, (2021). Mini-organs forum: how to advance organoid technology to organ transplant community Transplant International 34, 1588-1593
The generation of human mini-organs, the so-called organoids, is one of the biggest scientific advances in regenerative medicine. This technology exploits traditional three-dimensional culture techniques that support cell-autonomous self-organization responses of stem cells to derive micrometer to millimeter size versions of human organs. The convergence of the organoid technology with organ transplantation is still in its infancy but this alliance is expected to open new venues to change the way we conduct both transplant and organoid research. In this Forum we provide a summary on early achievements facilitating organoid derivation and culture. We further discuss on early advances of organoid transplantation also offering a comprehensive overview of current limitations and challenges to instruct organoid maturation. We expect that this Forum sets the ground for initial discussions between stem cell biologists, bioengineers, and the transplant community to better direct organoid basic research to advance the organ transplantation field.
JTD Keywords: in-vitro, matrix, mice, organoids, regenerative medicine, vivo, Intestinal stem-cell, Organoids, Regenerative medicine
Calistri, A, Luganini, A, Mognetti, B, Elder, E, Sibille, G, Conciatori, V, Del Vecchio, C, Sainas, S, Boschi, D, Montserrat, N, Mirazimi, A, Lolli, ML, Gribaudo, G, Parolin, C, (2021). The new generation hdhodh inhibitor meds433 hinders the in vitro replication of sars-cov-2 and other human coronaviruses Microorganisms 9, 1731
Although coronaviruses (CoVs) have long been predicted to cause zoonotic diseases and pandemics with high probability, the lack of effective anti-pan-CoVs drugs rapidly usable against the emerging SARS-CoV-2 actually prevented a promptly therapeutic intervention for COVID-19. Development of host-targeting antivirals could be an alternative strategy for the control of emerging CoVs infections, as they could be quickly repositioned from one pandemic event to another. To contribute to these pandemic preparedness efforts, here we report on the broad-spectrum CoVs antiviral activity of MEDS433, a new inhibitor of the human dihydroorotate dehydrogenase (hDHODH), a key cellular enzyme of the de novo pyrimidine biosynthesis pathway. MEDS433 in-hibited the in vitro replication of hCoV-OC43 and hCoV-229E, as well as of SARS-CoV-2, at low nanomolar range. Notably, the anti-SARS-CoV-2 activity of MEDS433 against SARS-CoV-2 was also observed in kidney organoids generated from human embryonic stem cells. Then, the antiviral activity of MEDS433 was reversed by the addition of exogenous uridine or the product of hDHODH, the orotate, thus confirming hDHODH as the specific target of MEDS433 in hCoVs-infected cells. Taken together, these findings suggest MEDS433 as a potential candidate to develop novel drugs for COVID-19, as well as broad-spectrum antiviral agents exploitable for future CoVs threats.
JTD Keywords: antiviral activity, biosynthesis, broad-spectrum antiviral, combination treatment, coronavirus, dipyridamole, hdhodh inhibitor, organoids, pyrimidine, pyrimidine biosynthesis, sars-cov-2, target, virus-infection, Antiviral activ-ity, Broad-spectrum antiviral, Combination treatment, Coronavirus, Gene-expression, Hdhodh inhibitor, Organoids, Pyrimidine biosynthesis, Sars-cov-2
Ojosnegros, S, Seriola, A, Godeau, AL, Veiga, A, (2021). Embryo implantation in the laboratory: an update on current techniques Human Reproduction Update 27, 501-530
BACKGROUND: The embryo implantation process is crucial for the correct establishment and progress of pregnancy. During implantation, the blastocyst trophectoderm cells attach to the epithelium of the endometrium, triggering intense cell-to-cell crosstalk that leads to trophoblast outgrowth, invasion of the endometrial tissue, and formation of the placenta. However, this process, which is vital for embryo and foetal development in utero, is still elusive to experimentation because of its inaccessibility. Experimental implantation is cumbersome and impractical in adult animal models and is inconceivable in humans. OBJECTIVE AND RATIONALE: A number of custom experimental solutions have been proposed to recreate different stages of the implantation process in vitro, by combining a human embryo (or a human embryo surrogate) and endometrial cells (or a surrogate for the endometrial tissue). In vitro models allow rapid high-throughput interrogation of embryos and cells, and efficient screening of molecules, such as cytokines, drugs, or transcription factors, that control embryo implantation and the receptivity of the endometrium. However, the broad selection of available in vitro systems makes it complicated to decide which system best fits the needs of a specific experiment or scientific question. To orient the reader, this review will explore the experimental options proposed in the literature, and classify them into amenable categories based on the embryo/cell pairs employed. The goal is to give an overview of the tools available to study the complex process of human embryo implantation, and explain the differences between them, including the advantages and disadvantages of each system. SEARCH METHODS: We performed a comprehensive review of the literature to come up with different categories that mimic the different stages of embryo implantation in vitro, ranging from initial blastocyst apposition to later stages of trophoblast invasion or gastrulation. We will also review recent breakthrough advances on stem cells and organoids, assembling embryo-like structures and endometrial tissues. OUTCOMES: We highlight the most relevant systems and describe the most significant experiments. We focus on in vitro systems that have contributed to the study of human reproduction by discovering molecules that control implantation, including hormones, signalling molecules, transcription factors and cytokines. WIDER IMPLICATIONS: The momentum of this field is growing thanks to the use of stem cells to build embryo-like structures and endometrial tissues, and the use of bioengineering to extend the life of embryos in culture. We propose to merge bioengineering methods derived from the fields of stem cells and reproduction to develop new systems covering a wider window of the implantation process.
JTD Keywords: in vitro models, blastocyst, blastocyst-like structures, early-pregnancy, endometrial cells, epidermal-growth-factor, gene-expression, implantation, in vitro models, in-vitro model, indian hedgehog, organoids, receptivity, self-organization, spheroids, trophoblast, trophoblast invasion, uterine receptivity, Blastocyst, Blastocyst-like structures, Early-pregnancy, Endometrial cells, Endometrial stromal cells, Epidermal-growth-factor, Gene-expression, Implantation, In vitro models, In-vitro model, Indian hedgehog, Organoids, Receptivity, Self-organization, Spheroids, Trophoblast, Trophoblast invasion, Uterine receptivity
Dhillon, P, Park, J, del Pozo, CH, Li, LZ, Doke, T, Huang, SZ, Zhao, JJ, Kang, HM, Shrestra, R, Balzer, MS, Chatterjee, S, Prado, P, Han, SY, Liu, HB, Sheng, X, Dierickx, P, Batmanov, K, Romero, JP, Prósper, F, Li, MY, Pei, LM, Kim, J, Montserrat, N, Susztak, K, (2021). The Nuclear Receptor ESRRA Protects from Kidney Disease by Coupling Metabolism and Differentiation Cell Metabolism 33, 379-394.e8
© 2020 Elsevier Inc. Using single-cell RNA sequencing, Susztak and colleagues, show major changes in cell diversity in mouse models of kidney fibrosis. Proximal tubule (PT) cells are highly vulnerable to dysfunction in fibrosis and show altered differentiation. Nuclear receptors such as ESRRA maintain both PT cell metabolism and differentiation by directly regulating PT-cell-specific genes.
JTD Keywords: chronic kidney disease, esrra, fatty-acid oxidation, fibrosis, kidney, organoids, ppara, proximal tubule cells, single-cell atac sequencing, Chronic kidney disease, Esrra, Fatty-acid oxidation, Fibrosis, Kidney, Organoids, Ppara, Proximal tubule cells, Single-cell atac sequencing, Single-cell rna sequencing
Garreta, E, Kamm, RD, Lopes, SMCD, Lancaster, MA, Weiss, R, Trepat, X, Hyun, I, Montserrat, N, (2021). Rethinking organoid technology through bioengineering Nature Materials 20, 145-155
In recent years considerable progress has been made in the development of faithful procedures for the differentiation of human pluripotent stem cells (hPSCs). An important step in this direction has also been the derivation of organoids. This technology generally relies on traditional three-dimensional culture techniques that exploit cell-autonomous self-organization responses of hPSCs with minimal control over the external inputs supplied to the system. The convergence of stem cell biology and bioengineering offers the possibility to provide these stimuli in a controlled fashion, resulting in the development of naturally inspired approaches to overcome major limitations of this nascent technology. Based on the current developments, we emphasize the achievements and ongoing challenges of bringing together hPSC organoid differentiation, bioengineering and ethics. This Review underlines the need for providing engineering solutions to gain control of self-organization and functionality of hPSC-derived organoids. We expect that this knowledge will guide the community to generate higher-grade hPSC-derived organoids for further applications in developmental biology, drug screening, disease modelling and personalized medicine. This Review provides an overview of bioengineering technologies that can be harnessed to facilitate the culture, self-organization and functionality of human pluripotent stem cell-derived organoids.
JTD Keywords: Differentiation, Embryonic-tissues, Extracellular-matrix, In-vitro, Kidney organoids, Model, Neural-tube, Pluripotent stem-cells, Reconstitution, Self-organization
Selfa, IL, Gallo, M, Montserrat, N, Garreta, E, (2021). Directed Differentiation of Human Pluripotent Stem Cells for the Generation of High-Order Kidney Organoids Crispr Knock-Ins In Organoids To Track Tumor Cell Subpopulations 2258, 171-192
© 2021, The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature. Our understanding in the inherent properties of human pluripotent stem cells (hPSCs) have made possible the development of differentiation procedures to generate three-dimensional tissue-like cultures, so-called organoids. Here we detail a stepwise methodology to generate kidney organoids from hPSCs. This is achieved through direct differentiation of hPSCs in two-dimensional monolayer culture toward the posterior primitive streak fate, followed by induction of intermediate mesoderm-committed cells, which are further aggregated and cultured in three-dimensions to generate kidney organoids containing segmented nephron-like structures in a process that lasts 20 days. We also provide a concise description on how to assess renal commitment during the time course of kidney organoid generation. This includes the use of flow cytometry and immunocytochemistry analyses for the detection of specific renal differentiation markers.
JTD Keywords: 2d monolayer, 3d organotypic culture, differentiation, flow cytometry, human pluripotent stem cells, immunocytochemistry, intermediate mesoderm, kidney organoid, nephron progenitor cells, nephrons, primitive streak, 2d monolayer, 3d organotypic culture, Differentiation, Flow cytometry, Human pluripotent stem cells, Immunocytochemistry, Intermediate mesoderm, Kidney organoid, Nephron progenitor cells, Nephrons, Primitive streak, Tissue
Hoogduijn, M.J., Montserrat, N., van der Laan, L.J.W., Dazzi, F., Perico, N., Kastrup, J., Gilbo, N., Ploeg, R.J., Roobrouck, V., Casiraghi, F., Johnson, C.L., Franquesa, M., Dahlke, M.H., Massey, E., Hosgood, S., Reinders, M.E.J., (2020). The emergence of regenerative medicine in organ transplantation: 1st European Cell Therapy and Organ Regeneration Section meeting Transplant International 33, (8), 833-840
Regenerative medicine is emerging as a novel field in organ transplantation. In September 2019, the European Cell Therapy and Organ Regeneration Section (ECTORS) of the European Society for Organ Transplantation (ESOT) held its first meeting to discuss the state-of-the-art of regenerative medicine in organ transplantation. The present article highlights the key areas of interest and major advances in this multidisciplinary field in organ regeneration and discusses its implications for the future of organ transplantation.
JTD Keywords: Cell therapy, Machine perfusion, Mesenchymal stromal cell, Organoid, Regeneration, Transplantation
Altay, Gizem, Batlle, Eduard, Fernández-Majada, Vanesa, Martínez, Elena, (2020). In vitro self-organized mouse small intestinal epithelial monolayer protocol Bio-protocol 10, (3), e3514
Developing protocols to obtain intestinal epithelial monolayers that recapitulate in vivo physiology to overcome the limitations of the organoids’ closed geometry has become of great interest during the last few years. Most of the developed culture models showed physiological-relevant cell composition but did not prove self-renewing capacities. Here, we show a simple method to obtain mouse small intestine-derived epithelial monolayers organized into proliferative crypt-like domains, containing stem cells, and differentiated villus-like regions, closely resembling the in vivo cell composition and distribution. In addition, we adapted our model to a tissue culture format compatible with functional studies and prove close to physiological barrier properties of our in vitro epithelial monolayers. Thus, we have set-up a protocol to generate physiologically relevant intestinal epithelial monolayers to be employed in assays where independent access to both luminal and basolateral compartments is needed, such as drug absorption, intracellular trafficking and microbiome-epithelium interaction assays.
JTD Keywords: Mouse intestinal organoids, Adult intestinal stem cells, Matrigel, Intestinal epithelial monolayer, In vitro intestinal epithelial model, Tissue-like functionality, TEER
Monteil, Vanessa, Kwon, Hyesoo, Prado, Patricia, Hagelkrüys, Astrid, Wimmer, Reiner A., Stahl, Martin, Leopoldi, Alexandra, Garreta, Elena, Hurtado Del Pozo, Carmen, Prosper, Felipe, Romero, Juan Pablo, Wirnsberger, Gerald, Zhang, Haibo, Slutsky, Arthur S., Conder, Ryan, Montserrat, Nuria, Mirazimi, Ali, Penninger, Josef M., (2020). Inhibition of SARS-CoV-2 infections in engineered human tissues using clinical-grade soluble human ACE2 Cell 181, (4), 905-913.e7
We have previously provided the first genetic evidence that angiotensin converting enzyme 2 (ACE2) is the critical receptor for severe acute respiratory syndrome coronavirus (SARS-CoV), and ACE2 protects the lung from injury, providing a molecular explanation for the severe lung failure and death due to SARS-CoV infections. ACE2 has now also been identified as a key receptor for SARS-CoV-2 infections, and it has been proposed that inhibiting this interaction might be used in treating patients with COVID-19. However, it is not known whether human recombinant soluble ACE2 (hrsACE2) blocks growth of SARS-CoV-2. Here, we show that clinical grade hrsACE2 reduced SARS-CoV-2 recovery from Vero cells by a factor of 1,000-5,000. An equivalent mouse rsACE2 had no effect. We also show that SARS-CoV-2 can directly infect engineered human blood vessel organoids and human kidney organoids, which can be inhibited by hrsACE2. These data demonstrate that hrsACE2 can significantly block early stages of SARS-CoV-2 infections.
JTD Keywords: COVID-19, Angiotensin converting enzyme 2, Blood vessels, Human organoids, Kidney, Severe acute respiratory syndrome coronavirus, Spike glycoproteins, Treatment
Torras, N., García-Díaz, M., Fernández-Majada, V., Martínez, Elena, (2018). Mimicking epithelial tissues in three-dimensional cell culture models Frontiers in Bioengineering and Biotechnology 6, Article 197
Epithelial tissues are composed of layers of tightly connected cells shaped into complex three-dimensional (3D) structures such as cysts, tubules, or invaginations. These complex 3D structures are important for organ-specific functions and often create biochemical gradients that guide cell positioning and compartmentalization within the organ. One of the main functions of epithelia is to act as physical barriers that protect the underlying tissues from external insults. In vitro, epithelial barriers are usually mimicked by oversimplified models based on cell lines grown as monolayers on flat surfaces. While useful to answer certain questions, these models cannot fully capture the in vivo organ physiology and often yield poor predictions. In order to progress further in basic and translational research, disease modeling, drug discovery, and regenerative medicine, it is essential to advance the development of new in vitro predictive models of epithelial tissues that are capable of representing the in vivo-like structures and organ functionality more accurately. Here, we review current strategies for obtaining biomimetic systems in the form of advanced in vitro models that allow for more reliable and safer preclinical tests. The current state of the art and potential applications of self-organized cell-based systems, organ-on-a-chip devices that incorporate sensors and monitoring capabilities, as well as microfabrication techniques including bioprinting and photolithography, are discussed. These techniques could be combined to help provide highly predictive drug tests for patient-specific conditions in the near future.
JTD Keywords: 3D cell culture models, Biofabrication, Disease modeling, Drug screening, Epithelial barriers, Microengineered tissues, Organ-on-a-chip, Organoids