DONATE

Publications

by Keyword: Logistics

Chaparro, J. A., Giraldo, B. F., (2014). Power index of the inspiratory flow signal as a predictor of weaning in intensive care units Engineering in Medicine and Biology Society (EMBC) 36th Annual International Conference of the IEEE , IEEE (Chicago, USA) , 78-81

Disconnection from mechanical ventilation, called the weaning process, is an additional difficulty in the management of patients in intensive care units (ICU). Unnecessary delays in the discontinuation process and a weaning trial that is undertaken too early are undesirable. In this study, we propose an extubation index based on the power of the respiratory flow signal (Pi). A total of 132 patients on weaning trials were studied: 94 patients with successful trials (group S) and 38 patients who failed to maintain spontaneous breathing and were reconnected (group F). The respiratory flow signals were processed considering the following three stages: a) zero crossing detection of the inspiratory phase, b) inflection point detection of the flow curve during the inspiratory phase, and c) calculation of the signal power on the time instant indicated by the inflection point. The zero crossing detection was performed using an algorithm based on thresholds. The inflection points were marked considering the zero crossing of the second derivative. Finally, the inspiratory power was calculated from the energy contained over the finite time interval (between the instant of zero crossing and the inflection point). The performance of this parameter was evaluated using the following classifiers: logistic regression, linear discriminant analysis, the classification and regression tree, Naive Bayes, and the support vector machine. The best results were obtained using the Bayesian classifier, which had an accuracy, sensitivity and specificity of 87%, 90% and 81% respectively.

JTD Keywords: Bayes methods, Bayesian classifier, Indexes, Logistics, Niobium, Regression tree analysis, Support vector machines, Ventilation


Chaparro, J.A., Giraldo, B.F., Caminal, P., Benito, S., (2012). Performance of respiratory pattern parameters in classifiers for predict weaning process Engineering in Medicine and Biology Society (EMBC) 34th Annual International Conference of the IEEE , IEEE (San Diego, USA) , 4349-4352

Weaning trials process of patients in intensive care units is a complex clinical procedure. 153 patients under extubation process (T-tube test) were studied: 94 patients with successful trials (group S), 38 patients who failed to maintain spontaneous breathing and were reconnected (group F), and 21 patients with successful test but that had to be reintubated before 48 hours (group R). The respiratory pattern of each patient was characterized through the following time series: inspiratory time (TI), expiratory time (TE), breathing cycle duration (TTot), tidal volume (VT), inspiratory fraction (TI/TTot), half inspired flow (VT/TI), and rapid shallow index (f/VT), where f is respiratory rate. Using techniques as autoregressive models (AR), autoregressive moving average models (ARMA) and autoregressive models with exogenous input (ARX), the most relevant parameters of the respiratory pattern were obtained. We proposed the evaluation of these parameters using classifiers as logistic regression (LR), linear discriminant analysis (LDA), support vector machines (SVM) and classification and regression tree (CART) to discriminate between patients from groups S, F and R. An accuracy of 93% (98% sensitivity and 82% specificity) has been obtained using CART classification.

JTD Keywords: Accuracy, Indexes, Logistics, Regression tree analysis, Support vector machines, Time series analysis, Autoregressive moving average processes, Medical signal processing, Pattern classification, Pneumodynamics, Regression analysis, Sensitivity, Signal classification, Support vector machines, Time series, SVM, T-tube testing, Autoregressive models-with-exogenous input, Autoregressive moving average models, Breathing cycle duration, Classification-and-regression tree, Expiratory time, Extubation process, Half inspired flow, Inspiratory fraction, Inspiratory time, Intensive care units, Linear discriminant analysis, Logistic regression, Rapid shallow index, Respiratory pattern parameter performance, Sensitivity, Spontaneous breathing, Support vector machines, Tidal volume, Time 48 hr, Time series, Weaning process classifiers