DONATE

Publications

by Keyword: Metastasis

Piñera-Avellaneda, D, Buxadera-Palomero, J, Ginebra, MP, Rupérez, E, Manero, JM, (2023). Gallium-doped thermochemically treated titanium reduces osteoclastogenesis and improves osteodifferentiation Frontiers In Bioengineering And Biotechnology 11, 1303313

Excessive bone resorption is one of the main causes of bone homeostasis alterations, resulting in an imbalance in the natural remodeling cycle. This imbalance can cause diseases such as osteoporosis, or it can be exacerbated in bone cancer processes. In such cases, there is an increased risk of fractures requiring a prosthesis. In the present study, a titanium implant subjected to gallium (Ga)-doped thermochemical treatment was evaluated as a strategy to reduce bone resorption and improve osteodifferentiation. The suitability of the material to reduce bone resorption was proven by inducing macrophages (RAW 264.7) to differentiate to osteoclasts on Ga-containing surfaces. In addition, the behavior of human mesenchymal stem cells (hMSCs) was studied in terms of cell adhesion, morphology, proliferation, and differentiation. The results proved that the Ga-containing calcium titanate layer is capable of inhibiting osteoclastogenesis, hypothetically by inducing ferroptosis. Furthermore, Ga-containing surfaces promote the differentiation of hMSCs into osteoblasts. Therefore, Ga-containing calcium titanate may be a promising strategy for patients with fractures resulting from an excessive bone resorption disease.Copyright © 2023 Piñera-Avellaneda, Buxadera-Palomero, Ginebra, Rupérez and Manero.

JTD Keywords: biology, bone metastasis, differentiation, ferroptosis, gallium, iron, mouse, osteoclast, osteoporosis, Bone metastasis, Ferroptosis, Gallium, Osteoclast, Osteoporosis, Ti metal, Titanium implant


Cañellas-Socias A, Cortina C, Hernando-Momblona X, Palomo-Ponce S, Mulholland EJ, Turon G, Mateo L, Conti S, Roman O, Sevillano M, Slebe F, Stork D, Caballé-Mestres A, Berenguer-Llergo A, Álvarez-Varela A, Fenderico N, Novellasdemunt L, Jiménez-Gracia L, Sipka T, Bardia L, Lorden P, Colombelli J, Heyn H, Trepat X, Tejpar S, Sancho E, Tauriello DVF, Leedham S, Attolini CS, Batlle E, (2022). Metastatic recurrence in colorectal cancer arises from residual EMP1+ cells Nature 611, 603-+

Around 30-40% of patients with colorectal cancer (CRC) undergoing curative resection of the primary tumour will develop metastases in the subsequent years1. Therapies to prevent disease relapse remain an unmet medical need. Here we uncover the identity and features of the residual tumour cells responsible for CRC relapse. An analysis of single-cell transcriptomes of samples from patients with CRC revealed that the majority of genes associated with a poor prognosis are expressed by a unique tumour cell population that we named high-relapse cells (HRCs). We established a human-like mouse model of microsatellite-stable CRC that undergoes metastatic relapse after surgical resection of the primary tumour. Residual HRCs occult in mouse livers after primary CRC surgery gave rise to multiple cell types over time, including LGR5+ stem-like tumour cells2-4, and caused overt metastatic disease. Using Emp1 (encoding epithelial membrane protein 1) as a marker gene for HRCs, we tracked and selectively eliminated this cell population. Genetic ablation of EMP1high cells prevented metastatic recurrence and mice remained disease-free after surgery. We also found that HRC-rich micrometastases were infiltrated with T cells, yet became progressively immune-excluded during outgrowth. Treatment with neoadjuvant immunotherapy eliminated residual metastatic cells and prevented mice from relapsing after surgery. Together, our findings reveal the cell-state dynamics of residual disease in CRC and anticipate that therapies targeting HRCs may help to avoid metastatic relapse.© 2022. The Author(s), under exclusive licence to Springer Nature Limited.

JTD Keywords: colonization, defines, human colon, mutations, plasticity, retrieval, stem-cells, subtypes, underlie, Animal, Animal cell, Animal experiment, Animal model, Animal tissue, Animals, Article, Cancer, Cancer growth, Cancer immunotherapy, Cancer inhibition, Cancer recurrence, Cancer staging, Cell, Cell adhesion, Cell migration, Cell population, Cell surface receptor, Cohort analysis, Colorectal cancer, Colorectal neoplasms, Colorectal tumor, Comprehensive molecular characterization, Controlled study, Crispr-cas9 system, Cytoskeleton, Disease exacerbation, Disease progression, Dynamics, Emp1 gene, Epithelial membrane protein-1, Extracellular matrix, Flow cytometry, Fluorescence intensity, Gene expression, Genetics, Human, Human cell, Humans, Immune response, Immunofluorescence, In situ hybridization, Marker gene, Metastasis potential, Mice, Minimal residual disease, Mouse, Neoplasm proteins, Neoplasm recurrence, local, Neoplasm, residual, Nonhuman, Pathology, Phenotype, Prevention and control, Protein, Receptors, cell surface, Single cell rna seq, Tumor, Tumor protein, Tumor recurrence


Blanco-Fernandez, B, Rey-Vinolas, S, Bagci, G, Rubi-Sans, G, Otero, J, Navajas, D, Perez-Amodio, S, Engel, E, (2022). Bioprinting Decellularized Breast Tissue for the Development of Three-Dimensional Breast Cancer Models Acs Applied Materials & Interfaces 14, 29467-29482

The tumor extracellular matrix (ECM) plays a vital role in tumor progression and drug resistance. Previous studies have shown that breast tissue-derived matrices could be an important biomaterial to recreate the complexity of the tumor ECM. We have developed a method for decellularizing and delipidating a porcine breast tissue (TDM) compatible with hydrogel formation. The addition of gelatin methacrylamide and alginate allows this TDM to be bioprinted by itself with good printability, shape fidelity, and cytocompatibility. Furthermore, this bioink has been tuned to more closely recreate the breast tumor by incorporating collagen type I (Col1). Breast cancer cells (BCCs) proliferate in both TDM bioinks forming cell clusters and spheroids. The addition of Col1 improves the printability of the bioink as well as increases BCC proliferation and reduces doxorubicin sensitivity due to a downregulation of HSP90. TDM bioinks also allow a precise three-dimensional printing of scaffolds containing BCCs and stromal cells and could be used to fabricate artificial tumors. Taken together, we have proven that these novel bioinks are good candidates for biofabricating breast cancer models.

JTD Keywords: 3d in vitro cancer model, bioprinting, breast tissue, 3d in vitro cancer model, Bioink, Bioprinting, Breast tissue, Crosstalk, Decellularization, Extracellular-matrix, Growth, Hydrogels, In-vitro, Inhibition, Mechanical-properties, Metastasis, Proliferation


Almendros, I., Montserrat, J. M., Torres, M., Dalmases, M., Cabañas, M. L., Campos-Rodríguez, F., Navajas, D., Farré, R., (2013). Intermittent hypoxia increases melanoma metastasis to the lung in a mouse model of sleep apnea Respiratory Physiology & Neurobiology , 186, (3), 303-307

Obstructive sleep apnea (OSA) has recently been associated with an increased risk of cancer incidence and mortality in humans. Experimental data in mice have also shown that intermittent hypoxia similar to that observed in OSA patients enhances tumor growth. The aim of this study was to test the hypothesis that intermittent hypoxia mimicking OSA enhances lung metastasis. A total of 75 C57BL/6J male mice (10-week-old) were subjected to either spontaneous or induced melanoma lung metastasis. Normoxic animals breathed room air and intermittent hypoxic animals were subjected to cycles of 20s of 5% O2 followed by 40s of room air for 6h/day. Spontaneous and induced lung metastases were studied after subcutaneous and intravenous injection of B16F10 melanoma cells, respectively. Compared with normoxia, intermittent hypoxia induced a significant increase in melanoma lung metastasis. These animal model results suggest that intermittent hypoxia could contribute to cancer metastasis in patients with OSA.

JTD Keywords: Intermittent hypoxia, Melanoma, Metastasis, OSA