DONATE

Publications

by Keyword: Nanorods

Perich, MP, Palma-Florez, S, Solé, C, Goberna-Ferrón, S, Samitier, J, Gómez-Romero, P, Mir, M, Lagunas, A, (2023). Polyoxometalate-Decorated Gold Nanoparticles Inhibit β-Amyloid Aggregation and Cross the Blood-Brain Barrier in a µphysiological Model Nanomaterials 13, 2697

Alzheimer's disease is characterized by a combination of several neuropathological hallmarks, such as extracellular aggregates of beta amyloid (Aβ). Numerous alternatives have been studied for inhibiting Aβ aggregation but, at this time, there are no effective treatments available. Here, we developed the tri-component nanohybrid system AuNPs@POM@PEG based on gold nanoparticles (AuNPs) covered with polyoxometalates (POMs) and polyethylene glycol (PEG). In this work, AuNPs@POM@PEG demonstrated the inhibition of the formation of amyloid fibrils, showing a 75% decrease in Aβ aggregation in vitro. As it is a potential candidate for the treatment of Alzheimer's disease, we evaluated the cytotoxicity of AuNPs@POM@PEG and its ability to cross the blood-brain barrier (BBB). We achieved a stable nanosystem that is non-cytotoxic below 2.5 nM to human neurovascular cells. The brain permeability of AuNPs@POM@PEG was analyzed in an in vitro microphysiological model of the BBB (BBB-on-a-chip), containing 3D human neurovascular cell co-cultures and microfluidics. The results show that AuNPs@POM@PEG was able to cross the brain endothelial barrier in the chip and demonstrated that POM does not affect the barrier integrity, giving the green light to further studies into this system as a nanotherapeutic.

JTD Keywords: beta-amyloid, blood-brain barrier organ-on-a-chip, cellular uptake, citrate, cytotoxicity, electrocatalytic reduction, gold nanoparticles, hypothesis, nanorods, polyoxometalates, size, stability, surface, Alzheimers-disease, Blood–brain barrier organ-on-a-chip, Gold nanoparticles, Nanovehicle, Polyoxometalates, Β-amyloid


Mestre, R, Cadefau, N, Hortelao, AC, Grzelak, J, Gich, M, Roig, A, Sánchez, S, (2021). Nanorods Based on Mesoporous Silica Containing Iron Oxide Nanoparticles as Catalytic Nanomotors: Study of Motion Dynamics Chemnanomat 7, 134-140

© 2020 Wiley-VCH GmbH Self-propelled particles and, in particular, those based on mesoporous silica, have raised considerable interest due to their potential applications in the environmental and biomedical fields thanks to their biocompatibility, tunable surface chemistry and large porosity. Although spherical particles have been widely used to fabricate nano- and micromotors, not much attention has been paid to other geometries, such as nanorods. Here, we report the fabrication of self-propelled mesoporous silica nanorods (MSNRs) that move by the catalytic decomposition of hydrogen peroxide by a sputtered Pt layer, Fe2O3 nanoparticles grown within the mesopores, or the synergistic combination of both. We show that motion can occur in two distinct sub-populations characterized by two different motion dynamics, namely enhanced diffusion or directional propulsion, especially when both catalysts are used. These results open up the possibility of using MSNRs as chassis for the fabrication of self-propelled particles for the environmental or biomedical fields.

JTD Keywords: Mesoporous silica, Nanomotors, Nanorods, Porous materials, Self-propulsion


Mestre, R., Cadefau, N., Hortelão, A. C., Grzelak, J., Gich, M., Roig, A., Sánchez, S., (2020). Nanorods based on mesoporous silica containing iron oxide nanoparticles as catalytic nanomotors: Study of motion dynamics ChemNanoMat 7, (2), 134-140

Self-propelled particles and, in particular, those based on mesoporous silica, have raised considerable interest due to their potential applications in the environmental and biomedical fields thanks to their biocompatibility, tunable surface chemistry and large porosity. Although spherical particles have been widely used to fabricate nano- and micromotors, not much attention has been paid to other geometries, such as nanorods. Here, we report the fabrication of self-propelled mesoporous silica nanorods (MSNRs) that move by the catalytic decomposition of hydrogen peroxide by a sputtered Pt layer, Fe2O3 nanoparticles grown within the mesopores, or the synergistic combination of both. We show that motion can occur in two distinct sub-populations characterized by two different motion dynamics, namely enhanced diffusion or directional propulsion, especially when both catalysts are used. These results open up the possibility of using MSNRs as chassis for the fabrication of self-propelled particles for the environmental or biomedical fields

JTD Keywords: Mesoporous silica, Nanomotors, Nanorods, Porous materials, Self-propulsion