by Keyword: Porous materials
Chen, JY, Xie, ZD, Sapienza, R, Hu, ZJ, Ruiz-Pérez, L, Tian, XH, Battaglia, G, (2025). Supramolecular Design of Polymeric Random Lasers Advanced Optical Materials ,
Random lasers (RLs) represent a distinctive class of laser systems wherein emission arises from multiple scattering events occurring with random orientations within a disorder media. Departing from conventional laser architectures, RL emission is primarily governed by random scattering phenomena, inherently limiting precise control over emission directionality and threshold intensity. Achieving a laser system with finely controllable RL characteristics poses a significant challenge. In this investigation, using polymeric high internal phase emulsion (PolyHIPE) scaffolds, known for their highly customizable surface topographies, is exploredas scattering media platforms for RLs. Dye on the PolyHIPE surface enables interaction with external stimuli, showing sensing potential. Using surface chemical modification techniques, the amphiphilic molecular is grafted onto the HIPE surface and RL behavior is investigated across HIPEs with controllable pore sizes. Notably, a discernible correlation emerges between the RL threshold and the collective influence of polyHIPE platform morphology and gain particle configuration. This heightened adaptability and finely tunable precision in the RL system offer increased versatility, enabling the tailored design of optimal lasers suited for diverse application scenarios. Consequently, these advancements substantially enhance the utility and versatility of RLs in various fields.
JTD Keywords: Block copolymers, Mar, Polyhipes, Polymeric high internal phase emulsion (polyhipe), Porous materials, Random lase
Mestre, R, Cadefau, N, Hortelao, AC, Grzelak, J, Gich, M, Roig, A, Sánchez, S, (2021). Nanorods Based on Mesoporous Silica Containing Iron Oxide Nanoparticles as Catalytic Nanomotors: Study of Motion Dynamics Chemnanomat 7, 134-140
© 2020 Wiley-VCH GmbH Self-propelled particles and, in particular, those based on mesoporous silica, have raised considerable interest due to their potential applications in the environmental and biomedical fields thanks to their biocompatibility, tunable surface chemistry and large porosity. Although spherical particles have been widely used to fabricate nano- and micromotors, not much attention has been paid to other geometries, such as nanorods. Here, we report the fabrication of self-propelled mesoporous silica nanorods (MSNRs) that move by the catalytic decomposition of hydrogen peroxide by a sputtered Pt layer, Fe2O3 nanoparticles grown within the mesopores, or the synergistic combination of both. We show that motion can occur in two distinct sub-populations characterized by two different motion dynamics, namely enhanced diffusion or directional propulsion, especially when both catalysts are used. These results open up the possibility of using MSNRs as chassis for the fabrication of self-propelled particles for the environmental or biomedical fields.
JTD Keywords: Mesoporous silica, Nanomotors, Nanorods, Porous materials, Self-propulsion
Mestre, R., Cadefau, N., Hortelão, A. C., Grzelak, J., Gich, M., Roig, A., Sánchez, S., (2020). Nanorods based on mesoporous silica containing iron oxide nanoparticles as catalytic nanomotors: Study of motion dynamics ChemNanoMat 7, (2), 134-140
Self-propelled particles and, in particular, those based on mesoporous silica, have raised considerable interest due to their potential applications in the environmental and biomedical fields thanks to their biocompatibility, tunable surface chemistry and large porosity. Although spherical particles have been widely used to fabricate nano- and micromotors, not much attention has been paid to other geometries, such as nanorods. Here, we report the fabrication of self-propelled mesoporous silica nanorods (MSNRs) that move by the catalytic decomposition of hydrogen peroxide by a sputtered Pt layer, Fe2O3 nanoparticles grown within the mesopores, or the synergistic combination of both. We show that motion can occur in two distinct sub-populations characterized by two different motion dynamics, namely enhanced diffusion or directional propulsion, especially when both catalysts are used. These results open up the possibility of using MSNRs as chassis for the fabrication of self-propelled particles for the environmental or biomedical fields
JTD Keywords: Mesoporous silica, Nanomotors, Nanorods, Porous materials, Self-propulsion
Koch, M. A., Engel, E., Planell, J. A., Lacroix, D., (2008). Cell seeding and characterisation of PLA/glass composite scaffolds for bone tissue engineering Journal of Biomechanics
16th Congress, European Society of Biomechanics , Elsevier (Lucerne, Switzerland) 41, (Supplement 1), S162
In this study polymer-glass composite scaffolds were characterized by permeability and porosity, two important properties for the use in perfusion bioreactors. These scaffolds were seeded with osteoblast-like cells to assess the efficiency of the used bioreactor. The used PLA/glass composite scaffolds are adequate for the perfusion culture. The high porosity and pore interconnectivity allow an even cell distribution and incorporation of a high cell number. For optimisation of the perfusion bioreactor system, further research has to be dedicated to the cell seeding and culture.
JTD Keywords: Biomedical materials, Bioreactors, Bone, Cellular biophysics, Composite materials, Orthopaedics, Permeability, Polymers, Porosity, Porous materials, Tissue engineering
Rodriguez, Segui, Bucior, I., Burger, M. M., Samitier, J., Errachid, A., Fernàndez-Busquets, X., (2007). Application of a bio-QCM to study carbohydrates self-interaction in presence of calcium Transducers '07 & Eurosensors Xxi, Digest of Technical Papers
14th International Conference on Solid-State Sensors, Actuators and Microsystems , IEEE (Lyon, France) 1-2, 1995-1998
In the past years, the quartz crystal microbalance (QCM) has been successfully applied to follow interfacial physical chemistry phenomena in a label free and real time manner. However, carbohydrate self adhesion has only been addressed partially using this technique. Carbohydrates play an important role in cell adhesion, providing a highly versatile form of attachment, suitable for biologically relevant recognition events in the initial steps of adhesion. Here, we provide a QCM study of carbohydrates' self-recognition in the presence of calcium, based on a species-specific cell recognition model provided by marine sponges. Our results show a difference in adhesion kinetics when varying either the calcium concentration (with a constant carbohydrate concentration) or the carbohydrate concentration (with constant calcium concentration).
JTD Keywords: Biomedical materials, Calcium, Cellular biophysics, Microbalances, Porous materials, Quartz, Surface chemistry/ bio-QCM, Carbohydrates self-interaction, Quartz crystal microbalance, Interfacial physical chemistry phenomena, Carbohydrate self adhesion, Biologically relevant recognition events, Marine sponges, Adhesion kinetics, Calcium concentration, Carbohydrate concentration, Biosensors, Biomedical materials, Surface chemistry, Cellular biophysics