DONATE

Publications

by Keyword: Neuroblastoma

Villasante, A, Corominas, J, Alcon, C, Garcia-Lizarribar, A, Mora, J, Lopez-Fanarraga, M, Samitier, J, (2024). Identification of GB3 as a Novel Biomarker of Tumor-Derived Vasculature in Neuroblastoma Using a Stiffness-Based Model Cancers 16, 1060

Simple Summary Neuroblastoma (NB), a prevalent childhood cancer, presents challenges in treatment due to its cellular diversity and the presence of tumor-derived endothelial cells (TECs) associated with chemoresistance. We lack specific biomarkers for TECs, hindering effective therapies. We developed a stiffness-based in vitro platform simulating arterial and venous conditions to address this gap. Notably, adrenergic NB cells transdifferentiated into TECs where there was an arterial-like stiffness, while mesenchymal cells did not. This platform facilitated the identification of Globotriaosylceramide (GB3) as a novel TEC biomarker. Moreover, we harnessed Shiga toxin-functionalized nanoparticles for the specific targeting of GB3-positive cells, showing promise for future therapeutic strategies. Our study provides insights into NB heterogeneity, offers a predictive tool for assessing aggressiveness, and introduces potential targets for precision therapies.Abstract Neuroblastoma (NB) is a childhood cancer in sympathetic nervous system cells. NB exhibits cellular heterogeneity, with adrenergic and mesenchymal states displaying distinct tumorigenic potentials. NB is highly vascularized, and blood vessels can form through various mechanisms, including endothelial transdifferentiation, leading to the development of tumor-derived endothelial cells (TECs) associated with chemoresistance. We lack specific biomarkers for TECs. Therefore, identifying new TEC biomarkers is vital for effective NB therapies. A stiffness-based platform simulating human arterial and venous stiffness was developed to study NB TECs in vitro. Adrenergic cells cultured on arterial-like stiffness transdifferentiated into TECs, while mesenchymal state cells did not. The TECs derived from adrenergic cells served as a model to explore new biomarkers, with a particular focus on GB3, a glycosphingolipid receptor implicated in angiogenesis, metastasis, and drug resistance. Notably, the TECs unequivocally expressed GB3, validating its novelty as a marker. To explore targeted therapeutic interventions, nanoparticles functionalized with the non-toxic subunit B of the Shiga toxin were generated, because they demonstrated a robust affinity for GB3-positive cells. Our results demonstrate the value of the stiffness-based platform as a predictive tool for assessing NB aggressiveness, the discovery of new biomarkers, and the evaluation of the effectiveness of targeted therapeutic strategies.

JTD Keywords: Alternative vasculature, Cells,differentiation,angiogenesis,origi, Gb3, Gb3,neuroblastoma,alternative vasculature,tumor-derived endothelial cell, Neuroblastoma, Tumor-derived endothelial cells


Boloix, A, Feiner-Gracia, N, Kober, M, Repetto, J, Pascarella, R, Soriano, A, Masanas, M, Segovia, N, Vargas-Nadal, G, Merlo-Mas, J, Danino, D, Abutbul-Ionita, I, Foradada, L, Roma, J, Cordoba, A, Sala, S, Toledo, JS, Gallego, S, Veciana, J, Albertazzi, L, Segura, MF, Ventosa, N, (2022). Engineering pH-Sensitive Stable Nanovesicles for Delivery of MicroRNA Therapeutics Small 18, 2101959

MicroRNAs (miRNAs) are small non-coding endogenous RNAs, which are attracting a growing interest as therapeutic molecules due to their central role in major diseases. However, the transformation of these biomolecules into drugs is limited due to their unstability in the bloodstream, caused by nucleases abundantly present in the blood, and poor capacity to enter cells. The conjugation of miRNAs to nanoparticles (NPs) could be an effective strategy for their clinical delivery. Herein, the engineering of non-liposomal lipid nanovesicles, named quatsomes (QS), for the delivery of miRNAs and other small RNAs into the cytosol of tumor cells, triggering a tumor-suppressive response is reported. The engineered pH-sensitive nanovesicles have controlled structure (unilamellar), size (<150 nm) and composition. These nanovesicles are colloidal stable (>24 weeks), and are prepared by a green, GMP compliant, and scalable one-step procedure, which are all unavoidable requirements for the arrival to the clinical practice of NP based miRNA therapeutics. Furthermore, QS protect miRNAs from RNAses and when injected intravenously, deliver them into liver, lung, and neuroblastoma xenografts tumors. These stable nanovesicles with tunable pH sensitiveness constitute an attractive platform for the efficient delivery of miRNAs and other small RNAs with therapeutic activity and their exploitation in the clinics.

JTD Keywords: cancer therapy, mirnas delivery, nanocarriers, nanovesicles, neuroblastoma, pediatric cancer, quatsomes, Biodistribution, Cancer therapy, Cell engineering, Cells, Cholesterol, Controlled drug delivery, Diseases, Dna, Dysregulated ph, Lipoplex, Microrna delivery, Mirnas delivery, Nanocarriers, Nanoparticles, Nanovesicle, Nanovesicles, Neuroblastoma, Neuroblastomas, Pediatric cancer, Ph sensitive, Ph sensors, Quatsome, Quatsomes, Rna, Sirna, Sirna delivery, Sirnas delivery, Small interfering rna, Small rna, Targeted drug delivery, Tumors, Vesicles


Almici, Enrico, Caballero, David, Montero, Joan, Samitier, Josep, (2020). 3D neuroblastoma in vitro models using engineered cell-derived matrices Biomaterials for 3D Tumor Modeling (ed. Kundu, Subhas C., Reis, Rui L.), Elsevier (Amsterdam, Netherlands) , 107-130

Neuroblastoma (NB) is a malignant tumor that affects the peripheral nervous system and represents one of the most frequent cancers in infants. Its prognosis is poor in older patients and the presence of genetic abnormalities. Metastasis is often present at the time of diagnosis, making treatment more intensive and unsuccessful. Poor prognosis and variable treatment efficacy require a better understanding of the underlying biology. Evidence has shown that the tumor microenvironment is the characteristic of tumor malignancy and progression. A more highly differentiated tissue phenotype represents a positive prognostic marker, while the tumoral tissue is characterized by a distinct composition and morphology of the extracellular matrix (ECM). In this chapter, we discuss the application of decellularized cell-derived matrices (CDMs) to model in vitro the morphology of the ECM encountered in histological hallmarks of NB patients. This technique allows for the in vitro reproduction of the fine structure and composition of native microenvironments. Because of recent advances in culture systems and decellularization techniques, it is possible to engineer CDM composition and microarchitecture to produce differentiated models of tissue niches. The final goal is to repopulate the “scaffold” with malignant NB cells for drug screening and target discovery applications, studying the impact of patient-inspired tissues on signaling, migration, and tissue remodeling.

JTD Keywords: Neuroblastoma, Cancer, Bioengineering, Tumor microenvironment, Cell-derived matrices, Decellularization