by Keyword: Vesicles
Wagner, AM, Kostina, NY, Xiao, Q, Klein, ML, Percec, V, Rodriguez-Emmenegger, C, (2024). Glycan-Driven Formation of Raft-Like Domains with Hierarchical Periodic Nanoarrays on Dendrimersome Synthetic Cells Biomacromolecules 25, 366-378
The accurate spatial segregation into distinct phases within cell membranes coordinates vital biochemical processes and functionalities in living organisms. One of nature's strategies to localize reactivity is the formation of dynamic raft domains. Most raft models rely on liquid-ordered L-0 phases in a liquid-disordered L-d phase lacking correlation and remaining static, often necessitating external agents for phase separation. Here, we introduce a synthetic system of bicomponent glycodendrimersomes coassembled from Janus dendrimers and Janus glycodendrimers (JGDs), where lactose-lactose interactions exclusively drive lateral organization. This mechanism results in modulated phases across two length scales, yielding raft-like microdomains featuring nanoarrays at the nanoscale. By varying the density of lactose and molecular architecture of JGDs, the nanoarray type and size, shape, and spacing of the domains were controlled. Our findings offer insight into the potential primordial origins of rudimentary raft domains and highlight the crucial role of glycans within the glycocalyx.
JTD Keywords: Article, Artificial cells, Atomic force microscopy, Bicomponents, Bilayer, Bilayer membrane, Biochemical functionality, Biochemical process, Biological-membranes, Cell component, Cell membrane, Cellular parameters, Chemical interaction, Chemical structure, Chemistry, Cytology, Defined janus glycodendrimers, Dehydration, Dendrimer, Dendrimers, Dilution, Dimer, External agents, Fourier transform, Giant vesicles, Glycan, Glycans, Glycocalyx, Glycodendrimers, Janus dendrimer, Janus glycodendrimer, Lactose, Lateral organization, Lectin, Lipid rafts, Living organisms, Membrane damage, Membrane microdomain, Membrane microdomains, Membrane structure, Metabolism, Modulated phases, Molecule, Monomer, Nanoarrays, Oligosaccharide, Organization, Periodicity, Phase separation, Phase-separation, Phospholipids, Polysaccharide, Polysaccharides, Raft like domain, Relative humidity, Spatial segregation, Structure analysis, Sugars, Synthetic systems, Tetramer, Unclassified drug, Unilamellar vesicles, Water
Englert, J, Witzdam, L, Söder, D, Garay-Sarmiento, M, Joseph, A, Wagner, AM, Rodriguez-Emmenegger, C, (2023). Synthetic Evolution of a Supramolecular Harpooning Mechanism to Immobilize Vesicles at Antifouling Interfaces Macromolecular Chemistry And Physics 224, 2300306
The immobilization of vesicles has been conceptualized as a method to functionalize biointerfaces. However, the preservation of their integrity post immobilization remains a considerable challenge. Interfacial interactions can cause vesicle rupture upon close surface contact and non-specific protein adsorption impairing surface functions. To date, immobilization of vesicles has relied solely on either entrapment or prior modification of vesicles, both of which require laborious preparation and limit their applications. This work develops a bioinspired strategy to pin vesicles without prior modification while preserving their intact shape. This work introduces antifouling diblock copolymers and ultrathin surface-attached hydrogels containing a brush-like interface consisting of a bottle brush copolymer of N-(2-hydroxypropyl) methacrylamide (HPMA) and N-(3-methacrylamidopropyl)-N,N-dimethyldodecan-1-aminiumiodide (C12+). The presence of positive charges generates an attractive force that pulls vesicles toward the surface. At the surface, the amphiphilic properties of the combs facilitate their insertion into the membrane, mimicking the harpooning mechanism observed in antimicrobial peptides. Importantly, the antifouling poly(HPMA) backdrop serves to safeguard the vesicles by preventing deformation and breakage. Using a combination of thermodynamic analysis, surface plasmon resonance, and confocal laser scanning microscopy, this work demonstrates the efficiency of this biomimetic system to capture vesicles while maintaining an antifouling interface necessary for bioapplications. This work presents a novel supramolecular approach that combines three key elements: long-range attraction, vesicle pinning, and short-range repulsion to attract and harpoon vesicles, while protecting them at the surface. This work envisions these coatings as universal and biocompatible platforms that can be used not only to study vesicle interactions, but also as tools for biomedical applications.image
JTD Keywords: Antifouling coatings, Coatings, Delivery, Extracellular vesicles, Fabrication, Hydrogel, Janus dendrimers, Lipid vesicles, Liposomes, Membrane insertion, Polymer brushes, Proteins, Surface-energy components, Ultrathin surface-attached hydrogels, Vesicle pinning
Quiñonero, G, Gallo, J, Carrasco, A, Samitier, J, Villasante, A, (2023). Engineering Biomimetic Nanoparticles through Extracellular Vesicle Coating in Cancer Tissue Models Nanomaterials 13, 3097
Using nanoparticles (NPs) in drug delivery has exhibited promising therapeutic potential in various cancer types. Nevertheless, several challenges must be addressed, including the formation of the protein corona, reduced targeting efficiency and specificity, potential immune responses, and issues related to NP penetration and distribution within 3-dimensional tissues. To tackle these challenges, we have successfully integrated iron oxide nanoparticles into neuroblastoma-derived extracellular vesicles (EVs) using the parental labeling method. We first developed a tissue-engineered (TE) neuroblastoma model, confirming the viability and proliferation of neuroblastoma cells for at least 12 days, supporting its utility for EV isolation. Importantly, EVs from long-term cultures exhibited no differences compared to short-term cultures. Concurrently, we designed Rhodamine (Rh) and Polyacrylic acid (PAA)-functionalized magnetite nanoparticles (Fe3O4@PAA-Rh) with high crystallinity, purity, and superparamagnetic properties (average size: 9.2 +/- 2.5 nm). We then investigated the internalization of Fe3O4@PAA-Rh nanoparticles within neuroblastoma cells within the TE model. Maximum accumulation was observed overnight while ensuring robust cell viability. However, nanoparticle internalization was low. Taking advantage of the enhanced glucose metabolism exhibited by cancer cells, glucose (Glc)-functionalized nanoparticles (Fe3O4@PAA-Rh-Glc) were synthesized, showing superior cell uptake within the 3D model without inducing toxicity. These glucose-modified nanoparticles were selected for parental labeling of the TE models, showing effective NP encapsulation into EVs. Our research introduces innovative approaches to advance NP delivery, by partially addressing the challenges associated with 3D systems, optimizing internalization, and enhancing NP stability and specificity through EV-based carriers. Also, our findings hold the promise of more precise and effective cancer therapies while minimizing potential side effects.
JTD Keywords: Biomimetic models, Extracellular vesicles, Iron oxide nanoparticles, Neuroblastoma, Precision medicine
Rodríguez-Comas, J, Castaño, C, Ortega, MA, Tejedera, A, Fernandez-González, M, Novials, A, Párrizas, M, Ramón-Azcón, J, (2023). Immunoaffinity‐Based Microfluidic Platform for Exosomal MicroRNA Isolation from Obese and Lean Mouse Plasma Advanced Materials Technologies 8, 2300054
Almadhi, S, Forth, J, Rodriguez-Arco, L, Duro-Castano, A, Williams, I, Ruiz-Pérez, L, Battaglia, G, (2023). Bottom-Up Preparation of Phase-Separated Polymersomes Macromolecular Bioscience 23, 2300068
A bottom-up approach to fabricating monodisperse, two-component polymersomes that possess phase-separated ("patchy") chemical topology is presented. This approach is compared with already-existing top-down preparation methods for patchy polymer vesicles, such as film rehydration. These findings demonstrate a bottom-up, solvent-switch self-assembly approach that produces a high yield of nanoparticles of the target size, morphology, and surface topology for drug delivery applications, in this case patchy polymersomes of a diameter of ≈50 nm. In addition, an image processing algorithm to automatically calculate polymersome size distributions from transmission electron microscope images based on a series of pre-processing steps, image segmentation, and round object identification is presented.© 2023 Wiley-VCH GmbH.
JTD Keywords: assemblies, copolymers, evolution, membranes, micelles, ph, phase separation, polymersomes, rafts, self-assembly, size, vesicles, Cell biology, Drug delivery, Phase separation, Polymersomes, Self-assembly, Vesicles
Javier-Reyna, R, Avalos-Padilla, Y, Marion, S, (2023). Editorial: Vesicular transport, the actin cytoskeleton and their involvement in virulence mechanisms during host-parasite interaction Frontiers In Cellular And Infection Microbiology 13, 1229067
Garcia-Guerra, A, Ellerington, R, Gaitzsch, J, Bath, J, Kye, M, Varela, MA, Battaglia, G, Wood, MJA, Manzano, R, Rinaldi, C, Turberfield, AJ, (2023). A modular RNA delivery system comprising spherical nucleic acids built on endosome-escaping polymeric nanoparticles Nanoscale Advances 5, 2941-2949
Polymeric spherical nucleic acids comprise pH-sensitive, polymer-conjugated oligonucleotides that self-assemble into nanoparticles with the ability to escape endosomes, overcoming a major obstacle in nucleic acid delivery.
JTD Keywords: c9orf72, cellular uptake, dna, encapsulation, expansion, ph, stability, trafficking, vesicles, Hexanucleotide repeat
González-Callejo, P, Gener, P, Díaz-Riascos, Z, Conti, S, Cámara-Sánchez, P, Riera, R, Mancilla, S, García-Gabilondo, M, Peg, V, Arango, D, Rosell, A, Labernadie, A, Trepat, X, Albertazzi, L, Schwartz, S Jr, Seras-Franzoso, J, Abasolo, I, (2023). Extracellular vesicles secreted by triple-negative breast cancer stem cells trigger premetastatic niche remodeling and metastatic growth in the lungs International Journal Of Cancer 152, 2153-2165
Tumor secreted extracellular vesicles (EVs) are potent intercellular signaling platforms. They are responsible for the accommodation of the premetastatic niche (PMN) to support cancer cell engraftment and metastatic growth. However, complex cancer cell composition within the tumor increases also the heterogeneity among cancer secreted EVs subsets, a functional diversity that has been poorly explored. This phenomenon is particularly relevant in highly plastic and heterogenous triple-negative breast cancer (TNBC), in which a significant representation of malignant cancer stem cells (CSCs) is displayed. Herein, we selectively isolated and characterized EVs from CSC or differentiated cancer cells (DCC; EVsCSC and EVsDCC , respectively) from the MDA-MB-231 TNBC cell line. Our results showed that EVsCSC and EVsDCC contain distinct bioactive cargos and therefore elicit a differential effect on stromal cells in the TME. Specifically, EVsDCC activated secretory cancer associated fibroblasts (CAFs), triggering IL-6/IL-8 signaling and sustaining CSC phenotype maintenance. Complementarily, EVsCSC promoted the activation of α-SMA+ myofibroblastic CAFs subpopulations and increased the endothelial remodeling, enhancing the invasive potential of TNBC cells in vitro and in vivo. In addition, solely the EVsCSC mediated signaling prompted the transformation of healthy lungs into receptive niches able to support metastatic growth of breast cancer cells.© 2023 The Authors. International Journal of Cancer published by John Wiley & Sons Ltd on behalf of UICC.
JTD Keywords: chemoresistance, dormancy, drives, extracellular vesicles, invasion, plasticity, premetastatic niche, triple-negative breast cancer, tumor microenvironment, Cancer cell plasticity, Cell line, tumor, Extracellular vesicles, Fibroblasts, Humans, Lung, Neoplastic stem cells, Premetastatic niche, Triple negative breast neoplasms, Triple-negative breast cancer, Tumor microenvironment
Avalos-Padilla, Y, Georgiev, VN, Ewins, E, Robinson, T, Orozco, E, Lipowsky, R, Dimova, R, (2023). Stepwise remodeling and subcompartment formation in individual vesicles by three ESCRT-III proteins Iscience 26, 105765
The endosomal sorting complex required for transport (ESCRT) is a multi-protein machinery involved in several membrane remodeling processes. Different approaches have been used to resolve how ESCRT proteins scission membranes. However, the underlying mechanisms generating membrane deformations are still a matter of debate. Here, giant unilamellar vesicles, microfluidic technology, and micropipette aspiration are combined to continuously follow the ESCRT-III-mediated membrane remodeling on the single-vesicle level for the first time. With this approach, we identify different mechanisms by which a minimal set of three ESCRT-III proteins from Entamoeba histolytica reshape the membrane. These proteins modulate the membrane stiffness and spontaneous curvature to regulate bud size and generate intraluminal vesicles even in the absence of ATP. We demonstrate that the bud stability depends on the protein concentration and membrane tension. The approaches introduced here should open the road to diverse applications in synthetic biology for establishing artificial cells with several membrane compartments.© 2022 The Author(s).
JTD Keywords: bilayer, curvature, diffusion-coefficients, identification, membrane-scission, phase-diagram, reveals, sorting complex, structural basis, Biophysics, Biotechnology, Cell biology, Giant vesicles, Membranes
Joseph, A, Wagner, AM, Garay-Sarmiento, M, Aleksanyan, M, Haraszti, T, Söder, D, Georgiev, VN, Dimova, R, Percec, V, Rodriguez-Emmenegger, C, (2022). Zwitterionic Dendrimersomes: A Closer Xenobiotic Mimic of Cell Membranes Advanced Materials 34, e2206288
Building functional mimics of cell membranes is an important task toward the development of synthetic cells. So far, lipid and amphiphilic block copolymers are the most widely used amphiphiles with the bilayers by the former lacking stability while membranes by the latter are typically characterized by very slow dynamics. Herein, we introduce a new type of Janus dendrimer containing a zwitterionic phosphocholine hydrophilic headgroup (JDPC ) and a 3,5-substituted dihydrobenzoate-based hydrophobic dendron. JDPC self-assembles in water into zwitterionic dendrimersomes (z-DSs) that faithfully recapitulate the cell membrane in thickness, flexibility, and fluidity, while being resilient to harsh conditions and displaying faster pore closing dynamics in the event of membrane rupture. This enables the fabrication of hybrid DSs with components of natural membranes, including pore-forming peptides, structure-directing lipids, and glycans to create raft-like domains or onion vesicles. Moreover, z-DSs can be used to create active synthetic cells with life-like features that mimic vesicle fusion and motility as well as environmental sensing. Despite their fully synthetic nature, z-DSs are minimal cell mimics that can integrate and interact with living matter with the programmability to imitate life-like features and beyond. This article is protected by copyright. All rights reserved.This article is protected by copyright. All rights reserved.
JTD Keywords: biological-membranes, bottom-up synthetic biology, chain, hybrid vesicles, hydroethidine, organization, polymersome, proteins, stability, synthetic cells, thickness, vesicle fusion, vesicle motility, vesicles, zwitterionic dendrimersomes, Biosensor, Biosensors, Bottom-up synthetic biology, Hybrid vesicles, Lipid-bilayers, Synthetic cells, Vesicle fusion, Vesicle motility, Zwitterionic dendrimersomes
Ulldemolins, A, Jurado, A, Herranz-Diez, C, Gavara, N, Otero, J, Farré, R, Almendros, I, (2022). Lung Extracellular Matrix Hydrogels-Derived Vesicles Contribute to Epithelial Lung Repair Polymers 14, 4907
The use of physiomimetic decellularized extracellular matrix-derived hydrogels is attracting interest since they can modulate the therapeutic capacity of numerous cell types, including mesenchymal stromal cells (MSCs). Remarkably, extracellular vesicles (EVs) derived from MSCs display similar functions as their parental cells, mitigating tissue damage in lung diseases. However, recent data have shown that ECM-derived hydrogels could release other resident vesicles similar to EVs. Here, we aim to better understand the contribution of EVs and ECM-vesicles released from MSCs and/or lung-derived hydrogel (L-HG) in lung repair by using an in vitro lung injury model. L-HG derived-vesicles and MSCs EVs cultured either in L-HG or conventional plates were isolated and characterized. The therapeutic capacity of vesicles obtained from each experimental condition was tested by using an alveolar epithelial wound-healing assay. The number of ECM-vesicles released from acellular L-HG was 10-fold greater than EVs from conventional MSCs cell culture revealing that L-HG is an important source of bioactive vesicles. MSCs-derived EVs and L-HG vesicles have similar therapeutic capacity in lung repair. However, when wound closure rate was normalized by total proteins, the MSCs-derived EVs shows higher therapeutic potential to those released by L-HG. The EVs released from L-HG must be considered when HG is used as substrate for cell culture and EVs isolation.
JTD Keywords: cell, extracellular vesicles, hydrogel, lung epithelial cells, lung repair, mesenchymal stem cells, Extracellular matrix, Extracellular vesicles, Hydrogel, Lung epithelial cells, Lung repair, Mesenchymal stem cells, Respiratory-distress-syndrome
Martínez-Miguel, M, Castellote-Borrell, M, Köber, M, Kyvik, AR, Tomsen-Melero, J, Vargas-Nadal, G, Muñoz, J, Pulido, D, Cristóbal-Lecina, E, Passemard, S, Royo, M, Mas-Torrent, M, Veciana, J, Giannotti, MI, Guasch, J, Ventosa, N, Ratera, I, (2022). Hierarchical Quatsome-RGD Nanoarchitectonic Surfaces for Enhanced Integrin-Mediated Cell Adhesion Acs Applied Materials & Interfaces 14, 48179-48193
The synthesis and study of the tripeptide Arg-Gly-Asp (RGD), the binding site of different extracellular matrix proteins, e.g., fibronectin and vitronectin, has allowed the production of a wide range of cell adhesive surfaces. Although the surface density and spacing of the RGD peptide at the nanoscale have already shown a significant influence on cell adhesion, the impact of its hierarchical nanostructure is still rather unexplored. Accordingly, a versatile colloidal system named quatsomes, based on fluid nanovesicles formed by the self-assembling of cholesterol and surfactant molecules, has been devised as a novel template to achieve hierarchical nanostructures of the RGD peptide. To this end, RGD was anchored on the vesicle's fluid membrane of quatsomes, and the RGD-functionalized nanovesicles were covalently anchored to planar gold surfaces, forming a state of quasi-suspension, through a long poly(ethylene glycol) (PEG) chain with a thiol termination. An underlying self-assembled monolayer (SAM) of a shorter PEG was introduced for vesicle stabilization and to avoid unspecific cell adhesion. In comparison with substrates featuring a homogeneous distribution of RGD peptides, the resulting hierarchical nanoarchitectonic dramatically enhanced cell adhesion, despite lower overall RGD molecules on the surface. The new versatile platform was thoroughly characterized using a multitechnique approach, proving its enhanced performance. These findings open new methods for the hierarchical immobilization of biomolecules on surfaces using quatsomes as a robust and novel tissue engineering strategy.
JTD Keywords: activation, arg-gly-asp (rgd), cell adhesion, extracellular-matrix, growth, integrins, ligands, nanopatterns, quatsomes, scaffolds, self-assembled monolayers, surface engineering, tissue engineering, Arg-gly-asp (rgd), Cell adhesion, Integrins, Nano-structured surfaces, Nanovesicles, Quatsomes, Self-assembled monolayers, Surface engineering, Tissue engineering
Perra, M, Manca, ML, Tuberoso, CIG, Caddeo, C, Marongiu, F, Peris, JE, Orru, G, Ibba, A, Fernandez-Busquets, X, Fattouch, S, Bacchetta, G, Manconi, M, (2022). A green and cost-effective approach for the efficient conversion of grape byproducts into innovative delivery systems tailored to ensure intestinal protection and gut microbiota fortification Innovative Food Science & Emerging Technologies 80, 103103
According to circular economy, wine-making by-products represent a fascinating biomass, which can be used for the sustainable exploitation of polyphenols and the development of new nanotechnological health-promoting products. In this study, polyphenols contained in the grape pomace were extracted by maceration with ethanol in an easy and low dissipative way. The obtained extract, rich in malvidin-3-glucoside, quercetin, pro-cyanidin B2 and gallic acid, was incorporated into phospholipid vesicles tailored for intestinal delivery. To improve their performances, vesicles were enriched with gelatine or a maltodextrin (Nutriose (R)), or their com-bination (gelatine-liposomes, nutriosomes and gelatine-nutriosomes). The small (-147 nm) and negatively charged (--50mV) vesicles were stable at different pH values mimicking saliva (6.75), gastric (1.20) and intestinal (7.00) environments. Vesicles effectively protected intestinal cells (Caco-2) from the oxidative stress and promoted the biofilm formation by probiotic bacteria. A preliminary evaluation of the vesicle feasibility at industrial levels was also performed, analysing the economic and energetic costs needed for their production.
JTD Keywords: Adhesion, Antioxidant activity, Caco-2 cells, Dextrin, Grape pomace extract, Lactobacillus-reuteri, Manufacturing costs, Oxidative stress, Ph, Phospholipid vesicles, Polyphenols, Probiotic bacteria, Protein
Wagner, AM, Eto, H, Joseph, A, Kohyama, S, Haraszti, T, Zamora, RA, Vorobii, M, Giannotti, MI, Schwille, P, Rodriguez-Emmenegger, C, (2022). Dendrimersome Synthetic Cells Harbor Cell Division Machinery of Bacteria Advanced Materials 34, 2202364
The integration of active cell machinery with synthetic building blocks is the bridge toward developing synthetic cells with biological functions and beyond. Self-replication is one of the most important tasks of living systems, and various complex machineries exist to execute it. In Escherichia coli, a contractile division ring is positioned to mid-cell by concentration oscillations of self-organizing proteins (MinCDE), where it severs membrane and cell wall. So far, the reconstitution of any cell division machinery has exclusively been tied to liposomes. Here, the reconstitution of a rudimentary bacterial divisome in fully synthetic bicomponent dendrimersomes is shown. By tuning the membrane composition, the interaction of biological machinery with synthetic membranes can be tailored to reproduce its dynamic behavior. This constitutes an important breakthrough in the assembly of synthetic cells with biological elements, as tuning of membrane-divisome interactions is the key to engineering emergent biological behavior from the bottom-up.
JTD Keywords: bacterial cell division, bottom-up synthetic biology, dendrimersomes, dynamic min patterns, ftsz assembly, Bacterial cell division, Bottom-up synthetic biology, Dendrimersomes, Dynamic min patterns, Dynamics, Ftsz assembly, Ftsz filaments, Mind, Organization, Pole oscillation, Polymersome membranes, Proteins, Rapid pole, Synthetic cells, Vesicles
Wagner, Anna M., Quandt, Jonas, Söder, Dominik, Garay-Sarmiento, Manuela, Joseph, Anton, Petrovskii, Vladislav S., Witzdam, Lena, Hammoor, Thomas, Steitz, Philipp, Haraszti, Tamás, Potemkin, Igor I., Kostina, Nina Yu., Herrmann, Andreas, Rodriguez-Emmenegger, Cesar, (2022). Ionic Combisomes: A New Class of Biomimetic Vesicles to Fuse with Life Advanced Science 9, e2200617-2200617
The construction of biomembranes that faithfully capture the properties and dynamic functions of cell membranes remains a challenge in the development of synthetic cells and their application. Here a new concept for synthetic cell membranes based on the self-assembly of amphiphilic comb polymers into vesicles, termed ionic combisomes (i-combisomes) is introduced. These combs consist of a polyzwitterionic backbone to which hydrophobic tails are linked by electrostatic interactions. Using a range of microscopies and molecular simulations, the self-assembly of a library of combs in water is screened. It is discovered that the hydrophobic tails form the membrane's core and force the backbone into a rod conformation with nematic-like ordering confined to the interface with water. This particular organization resulted in membranes that combine the stability of classic polymersomes with the biomimetic thickness, flexibility, and lateral mobility of liposomes. Such unparalleled matching of biophysical properties and the ability to locally reconfigure the molecular topology of its constituents enable the harboring of functional components of natural membranes and fusion with living bacteria to “hijack” their periphery. This provides an almost inexhaustible palette to design the chemical and biological makeup of the i-combisomes membrane resulting in a powerful platform for fundamental studies and technological applications.
JTD Keywords: amphiphilic comb polymers, bottom-up synthetic biology, hybrid vesicles, polyelectrolyte-surfactant complexes, polymersomes, synthetic biomembranes, Amphiphilic comb polymers, Biomimetics, Bottom-up synthetic biology, Hybrid vesicles, Hydrophobic and hydrophilic interactions, Liposomes, Polyelectrolyte-surfactant complexes, Polymers, Polymersomes, Synthetic biomembranes, Vesicle fusion, Water
Georgiev, VN, Avalos-Padilla, Y, Fernàndez-Busquets, X, Dimova, R, (2022). Femtoliter Injection of ESCRT-III Proteins into Adhered Giant Unilamellar Vesicles Bio Protoc 12, e4328
The endosomal sorting complex required for transport (ESCRT) machinery mediates membrane fission reactions that exhibit a different topology from that observed in clathrin-coated vesicles. In all of the ESCRT-mediated events, the nascent vesicle buds away from the cytosol. However, ESCRT proteins are able to act upon membranes with different geometries. For instance, the formation of multivesicular bodies (MVBs) and the biogenesis of extracellular vesicles both require the participation of the ESCRT-III sub-complex, and they differ in their initial membrane geometry before budding starts: the protein complex acts either from outside the membrane organelle (causing inward budding) or from within (causing outward budding). Several studies have reconstituted the action of the ESCRT-III subunits in supported bilayers and cell-sized vesicles mimicking the geometry occurring during MVBs formation (in-bud), but extracellular vesicle budding (out-bud) mechanisms remain less explored, because of the outstanding difficulties encountered in encapsulation of functional ESCRT-III in vesicles. Here, we provide a different approach that allows the recreation of the out-bud formation, by combining giant unilamellar vesicles as a membrane model and a microinjection system. The vesicles are immobilized prior to injection via weak adhesion to the chamber coverslip, which also ensures preserving the membrane excess area required for budding. After protein injection, vesicles exhibit outward budding. The approach presented in this work can be used in the future to disentangle the mechanisms underlying ESCRT-III-mediated fission, recreating the geometry of extracellular bud production, which remains a challenge. Moreover, the microinjection methodology can be also adapted to interrogate the action of other cytosolic components on the encapsulating membranous organelle. Copyright: © 2022 The Authors.
JTD Keywords: adhesion, budding, electroformation, escrt-iii, exosomes, extracellular vesicles, giant unilamellar vesicle (guv), light, microinjection, microparticles, plasma, Adhesion, Budding, Escrt-iii, Extracellular vesicles, Giant unilamellar vesicle (guv), Membrane, Microinjection
Boloix, A, Feiner-Gracia, N, Kober, M, Repetto, J, Pascarella, R, Soriano, A, Masanas, M, Segovia, N, Vargas-Nadal, G, Merlo-Mas, J, Danino, D, Abutbul-Ionita, I, Foradada, L, Roma, J, Cordoba, A, Sala, S, Toledo, JS, Gallego, S, Veciana, J, Albertazzi, L, Segura, MF, Ventosa, N, (2022). Engineering pH-Sensitive Stable Nanovesicles for Delivery of MicroRNA Therapeutics Small 18, 2101959
MicroRNAs (miRNAs) are small non-coding endogenous RNAs, which are attracting a growing interest as therapeutic molecules due to their central role in major diseases. However, the transformation of these biomolecules into drugs is limited due to their unstability in the bloodstream, caused by nucleases abundantly present in the blood, and poor capacity to enter cells. The conjugation of miRNAs to nanoparticles (NPs) could be an effective strategy for their clinical delivery. Herein, the engineering of non-liposomal lipid nanovesicles, named quatsomes (QS), for the delivery of miRNAs and other small RNAs into the cytosol of tumor cells, triggering a tumor-suppressive response is reported. The engineered pH-sensitive nanovesicles have controlled structure (unilamellar), size (<150 nm) and composition. These nanovesicles are colloidal stable (>24 weeks), and are prepared by a green, GMP compliant, and scalable one-step procedure, which are all unavoidable requirements for the arrival to the clinical practice of NP based miRNA therapeutics. Furthermore, QS protect miRNAs from RNAses and when injected intravenously, deliver them into liver, lung, and neuroblastoma xenografts tumors. These stable nanovesicles with tunable pH sensitiveness constitute an attractive platform for the efficient delivery of miRNAs and other small RNAs with therapeutic activity and their exploitation in the clinics.
JTD Keywords: cancer therapy, mirnas delivery, nanocarriers, nanovesicles, neuroblastoma, pediatric cancer, quatsomes, Biodistribution, Cancer therapy, Cell engineering, Cells, Cholesterol, Controlled drug delivery, Diseases, Dna, Dysregulated ph, Lipoplex, Microrna delivery, Mirnas delivery, Nanocarriers, Nanoparticles, Nanovesicle, Nanovesicles, Neuroblastoma, Neuroblastomas, Pediatric cancer, Ph sensitive, Ph sensors, Quatsome, Quatsomes, Rna, Sirna, Sirna delivery, Sirnas delivery, Small interfering rna, Small rna, Targeted drug delivery, Tumors, Vesicles
Le Roux, AL, Tozzi, C, Walani, N, Quiroga, X, Zalvidea, D, Trepat, X, Staykova, M, Arroyo, M, Roca-Cusachs, P, (2021). Dynamic mechanochemical feedback between curved membranes and BAR protein self-organization Nature Communications 12, 6550
In many physiological situations, BAR proteins reshape membranes with pre-existing curvature (templates), contributing to essential cellular processes. However, the mechanism and the biological implications of this reshaping process remain unclear. Here we show, both experimentally and through modelling, that BAR proteins reshape low curvature membrane templates through a mechanochemical phase transition. This phenomenon depends on initial template shape and involves the co-existence and progressive transition between distinct local states in terms of molecular organization (protein arrangement and density) and membrane shape (template size and spherical versus cylindrical curvature). Further, we demonstrate in cells that this phenomenon enables a mechanotransduction mode, in which cellular stretch leads to the mechanical formation of membrane templates, which are then reshaped into tubules by BAR proteins. Our results demonstrate the interplay between membrane mechanics and BAR protein molecular organization, integrating curvature sensing and generation in a comprehensive framework with implications for cell mechanical responses.
JTD Keywords: aggregation, amphiphysin, domains, vesicles, Article, Cell, Cell component, Curvature, Detection method, Geomembrane, Mechanotransduction, Membrane, Molecular analysis, Phase transition, Physiology, Protein, Self organization
Avalos-Padilla, Y, Georgiev, VN, Dimova, R, (2021). ESCRT-III induces phase separation in model membranes prior to budding and causes invagination of the liquid-ordered phase Biochimica Et Biophysica Acta-Biomembranes 1863, 183689
Membrane fission triggered by the endosomal sorting complex required for transport (ESCRT) is an important process observed in several pathogenic and non-pathogenic cellular events. From a synthetic-biology viewpoint, ESCRT proteins represent an interesting machinery for the construction of cell mimetic sub-compartments produced by fission. Since their discovery, the studies on ESCRT-III-mediated action, have mainly focused on protein dynamics, ignoring the role of lipid organization and membrane phase state. Recently, it has been suggested that membrane buds formed by the action of ESCRT-III are generated from transient microdomains in endosomal membranes. However, the interplay between membrane domain formation and ESCRT remodeling pathways has not been investigated. Here, giant unilamellar vesicles made of ternary lipid mixtures, either homogeneous in phase or exhibiting liquid-ordered/liquid-disordered phase coexistence, were employed as a model membrane system. These vesicles were incubated with purified recombinant ESCRT-III proteins from the parasite Entamoeba histolytica. In homogeneous membranes, we observe that EhVps32 can trigger domain formation while EhVps20 preferentially co-localizes in the liquid disordered phase. The addition of EhVps24 appears to induce the formation of intraluminal vesicles produced from the liquid-ordered phase. In phase separated membranes, the intraluminal vesicles are also generated from the liquid-ordered phase and presumably emerge from the phase boundary region. Our findings reinforce the hypothesis that ESCRT-mediated remodeling depends on the membrane phase state. Furthermore, the obtained results point to a potential synthetic biology approach for establishing eukaryotic mimics of artificial cells with microcompartments of specific membrane composition, which can also differ from that of the mother vesicle.
JTD Keywords: cell-membranes, coexistence, complex, escrt-iii, fission, guvs, lipid domains, lipid rafts, membrane fission, microcompartments, microscopy, phase separation, plasma-membrane, protein microarrays, structural basis, ternary mixtures, Escrt-iii, Giant unilamellar vesicles, Guvs, Lipid domains, Membrane fission, Microcompartments, Phase separation, Ternary mixtures
Cereta, AD, Oliveira, VR, Costa, IP, Afonso, JPR, Fonseca, AL, de Souza, ART, Silva, GAM, Mello, DACPG, de Oliveira, LVF, da Palma, RK, (2021). Emerging Cell-Based Therapies in Chronic Lung Diseases: What About Asthma? Frontiers In Pharmacology 12, 648506
Asthma is a widespread disease characterized by chronic airway inflammation. It causes substantial disability, impaired quality of life, and avoidable deaths around the world. The main treatment for asthmatic patients is the administration of corticosteroids, which improves the quality of life; however, prolonged use of corticosteroids interferes with extracellular matrix elements. Therefore, cell-based therapies are emerging as a novel therapeutic contribution to tissue regeneration for lung diseases. This study aimed to summarize the advancements in cell therapy involving mesenchymal stromal cells, extracellular vesicles, and immune cells such as T-cells in asthma. Our findings provide evidence that the use of mesenchymal stem cells, their derivatives, and immune cells such as T-cells are an initial milestone to understand how emergent cell-based therapies are effective to face the challenges in the development, progression, and management of asthma, thus improving the quality of life.
JTD Keywords: asthma treatments, cell-based therapies, chronic lung diseases, extracellular vesicles, immune cells, mesenchymal stromal cells, Asthma treatments, Cell-based therapies, Chronic lung diseases, Extracellular vesicles, Immune cells, Mesenchymal stromal cells
Manca, ML, Ferraro, M, Pace, E, Di Vincenzo, S, Valenti, D, Fernàndez-Busquets, X, Peptu, CA, Manconi, M, (2021). Loading of beclomethasone in liposomes and hyalurosomes improved with mucin as effective approach to counteract the oxidative stress generated by cigarette smoke extract Nanomaterials 11, 850
In this work beclomethasone dipropionate was loaded into liposomes and hyalurosomes modified with mucin to improve the ability of the payload to counteract the oxidative stress and involved damages caused by cigarette smoke in the airway. The vesicles were prepared by dispersing all components in the appropriate vehicle and sonicating them, thus avoiding the use of organic solvents. Unilamellar and bilamellar vesicles small in size (~117 nm), homogeneously dispersed (polydispersity index lower than 0.22) and negatively charged (~−11 mV), were obtained. Moreover, these vesicle dispersions were stable for five months at room temperature (~25 C). In vitro studies performed using the Next Generation Impactor confirmed the suitability of the formulations to be nebulized as they were capable of reaching the last stages of the impactor that mimic the deeper airways, thus improving the deposition of beclomethasone in the target site. Further, biocompatibility studies performed by using 16HBE bronchial epithelial cells confirmed the high biocompatibility and safety of all the vesicles. Among the tested formulations, only mucin-hyalurosomes were capable of effectively counteracting the production of reactive oxygen species (ROS) induced by cigarette smoke extract, suggesting that this formulation may represent a promising tool to reduce the damaging effects of cigarette smoke in the lung tissues, thus reducing the pathogenesis of cigarette smoke-associated diseases such as chronic obstructive pulmonary disease, emphysema, and cancer. ◦
JTD Keywords: 16hbe cells, beclomethasone, cigarette smoke extract, mucin, oxidative stress, phospholipid vesicles, pulmonary delivery, 16hbe cells, Beclomethasone, Cigarette smoke extract, Mucin, Oxidative stress, Phospholipid vesicles, Pulmonary delivery
Allaw, M., Manca, M. L., Caddeo, C., Recio, M. C., Pérez-Brocal, V., Moya, A., Fernàndez-Busquets, X., Manconi, M., (2020). Advanced strategy to exploit wine-making waste by manufacturing antioxidant and prebiotic fibre-enriched vesicles for intestinal health Colloids and Surfaces B: Biointerfaces 193, 111146
Grape extract-loaded fibre-enriched vesicles, nutriosomes, were prepared by combining antioxidant extracts obtained from grape pomaces and a prebiotic, soluble fibre (Nutriose®FM06). The nutriosomes were small in size (from ∼140 to 260 nm), homogeneous (polydispersity index < 0.2) and highly negative (∼ −79 mV). The vesicles were highly stable during 12 months of storage at 25 °C. When diluted with warmed (37 °C) acidic medium (pH 1.2) of high ionic strength, the vesicles only displayed an increase of the mean diameter and a low release of the extract, which were dependent on Nutriose concentration. The formulations were highly biocompatible and able to protect intestinal cells (Caco-2) from oxidative stress damage. In vivo results underlined that the composition of mouse microbiota was not affected by the vesicular formulations. Overall results support the potential application of grape nutriosomes as an alternative strategy for the protection of the intestinal tract.
JTD Keywords: Antioxidant activity, Grape pomace, Gut microbiota, In vivo studies, Intestinal cells, Nutriosomes, Phospholipid vesicles, Prebiotic activity
Borgheti-Cardoso, L. N., Kooijmans, S. A. A., Gutiérrez Chamorro, L., Biosca, A., Lantero, E., Ramírez, M., Avalos-Padilla, Y., Crespo, I., Fernández, I., Fernandez-Becerra, C., del Portillo, H. A., Fernàndez-Busquets, X., (2020). Extracellular vesicles derived from Plasmodium-infected and non-infected red blood cells as targeted drug delivery vehicles International Journal of Pharmaceutics 587, 119627
Among several factors behind drug resistance evolution in malaria is the challenge of administering overall doses that are not toxic for the patient but that, locally, are sufficiently high to rapidly kill the parasites. Thus, a crucial antimalarial strategy is the development of drug delivery systems capable of targeting antimalarial compounds to Plasmodium with high specificity. In the present study, extracellular vesicles (EVs) have been evaluated as a drug delivery system for the treatment of malaria. EVs derived from naive red blood cells (RBCs) and from Plasmodium falciparum-infected RBCs (pRBCs) were isolated by ultrafiltration followed by size exclusion chromatography. Lipidomic characterization showed that there were no significant qualitative differences between the lipidomic profiles of pRBC-derived EVs (pRBC-EVs) and RBC-derived EVs (RBC-EVs). Both EVs were taken up by RBCs and pRBCs, although pRBC-EVs were more efficiently internalized than RBC-EVs, which suggested their potential use as drug delivery vehicles for these cells. When loaded into pRBC-EVs, the antimalarial drugs atovaquone and tafenoquine inhibited in vitro P. falciparum growth more efficiently than their free drug counterparts, indicating that pRBC-EVs can potentially increase the efficacy of several small hydrophobic drugs used for the treatment of malaria.
JTD Keywords: Antimalarial drugs, Drug delivery, Extracellular vesicles, Malaria, Plasmodium falciparum
Manca, M. L., Lattuada, D., Valenti, D., Marelli, O., Corradini, C., Fernàndez-Busquets, X., Zaru, M., Maccioni, A. M., Fadda, A. M., Manconi, M., (2019). Potential therapeutic effect of curcumin loaded hyalurosomes against inflammatory and oxidative processes involved in the pathogenesis of rheumatoid arthritis: The use of fibroblast-like synovial cells cultured in synovial fluid European Journal of Pharmaceutics and Biopharmaceutics 136, 84-92
In the present work curcumin loaded hyalurosomes were proposed as innovative systems for the treatment of rheumatoid arthritis. Vesicles were prepared using a one-step and environmentally friendly method. Aiming at finding the most suitable formulation in terms of size, surface charge and stability on storage, an extensive pre-formulation study was performed using different type and amount of phospholipids. Curcumin loaded vesicles prepared with 180 mg/ml of Phospholipon 90G (P90G) and immobilized with sodium hyaluronate (2 mg/ml) were selected because of their small size (189 nm), homogeneous dispersion (PI 0.24), negative charge (−35 mV), suitable ability to incorporate high amount of curcumin (E% 88%) and great stability on storage. The in vitro study using fibroblast-like synovial cells cultured in synovial fluid, demonstrated the ability of these vesicles to downregulate the production of anti-apoptotic proteins IAP1 and IAP2 and stimulate the production of IL-10, while the production of IL-6 and IL-15 and reactive oxygen species was reduced, confirming their suitability in counteracting pathogenesis of rheumatoid arthritis.
JTD Keywords: Curcumin, IL-6 and IL-15, In vitro inflammation, Oxidative stress, Phospholipid vesicles, Synoviocytes
Muro, Silvia, (2018). Alterations in cellular processes involving vesicular trafficking and implications in drug delivery Biomimetics 3, (3), 19
Endocytosis and vesicular trafficking are cellular processes that regulate numerous functions required to sustain life. From a translational perspective, they offer avenues to improve the access of therapeutic drugs across cellular barriers that separate body compartments and into diseased cells. However, the fact that many factors have the potential to alter these routes, impacting our ability to effectively exploit them, is often overlooked. Altered vesicular transport may arise from the molecular defects underlying the pathological syndrome which we aim to treat, the activity of the drugs being used, or side effects derived from the drug carriers employed. In addition, most cellular models currently available do not properly reflect key physiological parameters of the biological environment in the body, hindering translational progress. This article offers a critical overview of these topics, discussing current achievements, limitations and future perspectives on the use of vesicular transport for drug delivery applications.
JTD Keywords: Cellular vesicles, Vesicle fusion, Fission and intracellular trafficking, Drug delivery systems and nanomedicines, Transcytosis and endocytosis of drugs carriers, Disease effects on vesicular trafficking, Drug effects on vesicular trafficking, Role of the biological environment
Martí Coma-Cros, Elisabet, Biosca, Arnau, Lantero, Elena, Manca, Maria, Caddeo, Carla, Gutiérrez, Lucía, Ramírez, Miriam, Borgheti-Cardoso, Livia, Manconi, Maria, Fernàndez-Busquets, Xavier, (2018). Antimalarial activity of orally administered curcumin incorporated in Eudragit®-containing liposomes International Journal of Molecular Sciences 19, (5), 1361
Curcumin is an antimalarial compound easy to obtain and inexpensive, having shown little toxicity across a diverse population. However, the clinical use of this interesting polyphenol has been hampered by its poor oral absorption, extremely low aqueous solubility and rapid metabolism. In this study, we have used the anionic copolymer Eudragit® S100 to assemble liposomes incorporating curcumin and containing either hyaluronan (Eudragit-hyaluronan liposomes) or the water-soluble dextrin Nutriose® FM06 (Eudragit-nutriosomes). Upon oral administration of the rehydrated freeze-dried nanosystems administered at 25/75 mg curcumin·kg−1·day−1, only Eudragit-nutriosomes improved the in vivo antimalarial activity of curcumin in a dose-dependent manner, by enhancing the survival of all Plasmodium yoelii-infected mice up to 11/11 days, as compared to 6/7 days upon administration of an equal dose of the free compound. On the other hand, animals treated with curcumin incorporated in Eudragit-hyaluronan liposomes did not live longer than the controls, a result consistent with the lower stability of this formulation after reconstitution. Polymer-lipid nanovesicles hold promise for their development into systems for the oral delivery of curcumin-based antimalarial therapies.
JTD Keywords: Malaria, Curcumin, Nanomedicine, Oral administration, Lipid nanovesicles, Eudragit, Nutriose, Hyaluronan, Plasmodium yoelii
Borgheti-Cardoso, L.N., Fernàndez-Busquets, X., (2018). Turning Plasmodium survival strategies against itself Future Medicinal Chemistry 10, (19), 2245-2248
Vitonyte, J., Manca, M. L., Caddeo, C., Valenti, D., Peris, J. E., Usach, I., Nacher, A., Matos, M., Gutiérrez, G., Orrù, G., Fernàndez-Busquets, X., Fadda, A. M., Manconi, M., (2017). Bifunctional viscous nanovesicles co-loaded with resveratrol and gallic acid for skin protection against microbial and oxidative injuries European Journal of Pharmaceutics and Biopharmaceutics 114, 278-287
Resveratrol and gallic acid were co-loaded in phospholipid vesicles aiming at protecting the skin from external injuries, such as oxidative stress and microbial infections. Liposomes were prepared using biocompatible phospholipids dispersed in water. To improve vesicle stability and applicability, the phospholipids and the phenols were dispersed in water/propylene glycol or water/glycerol, thus obtaining PEVs and glycerosomes, respectively. The vesicles were characterized by size, morphology, physical stability, and their therapeutic efficacy was investigated in vitro. The vesicles were spherical, unilamellar and small in size: liposomes and glycerosomes were around 70 nm in diameter, while PEVs were larger (∼170 nm). The presence of propylene glycol or glycerol increased the viscosity of the vesicle systems, positively affecting their stability. The ability of the vesicles to promote the accumulation of the phenols (especially gallic acid) in the skin was demonstrated, as well as their low toxicity and great ability to protect keratinocytes and fibroblasts from oxidative damage. Additionally, an improvement of the antimicrobial activity of the phenols was shown against different skin pathogens. The co-loading of resveratrol and gallic acid in modified phospholipid vesicles represents an innovative, bifunctional tool for preventing and treating skin affections.
JTD Keywords: Fibroblasts, Keratinocytes, Phenol, Phospholipid vesicle, Skin pathogens
Terni, Beatrice, Pacciolla, Paolo, Masanas, Helena, Gorostiza, Pau, Llobet, Artur, (2017). Tight temporal coupling between synaptic rewiring of olfactory glomeruli and the emergence of odor-guided behavior in Xenopus tadpoles Journal of Comparative Neurology , 525, (17), 3769-3783
Olfactory sensory neurons (OSNs) are chemoreceptors that establish excitatory synapses within glomeruli of the olfactory bulb. OSNs undergo continuous turnover throughout life, causing the constant replacement of their synaptic contacts. Using Xenopus tadpoles as an experimental system to investigate rewiring of glomerular connectivity, we show that novel OSN synapses can transfer information immediately after formation, mediating olfactory-guided behavior. Tadpoles recover the ability to detect amino acids 4 days after bilateral olfactory nerve transection. Restoration of olfactory-guided behavior depends on the efficient reinsertion of OSNs to the olfactory bulb. Presynaptic terminals of incipient synaptic contacts generate calcium transients in response to odors, triggering long lasting depolarization of olfactory glomeruli. The functionality of reconnected terminals relies on well-defined readily releasable and cytoplasmic vesicle pools. The continuous growth of non-compartmentalized axonal processes provides a vesicle reservoir to nascent release sites, which contrasts to the gradual development of cytoplasmic vesicle pools in conventional excitatory synapses. The immediate availability of fully functional synapses upon formation supports an age-independent contribution of OSNs to the generation of odor maps.
JTD Keywords: Olfactory receptor neurons, Olfactory bulb, Presynaptic terminals, RRID:SCR_013731, RRID:SCR_007164, RRID: AB-887824, RRID: AB-221570, Synaptic vesicles
Sanmartí-Espinal, M., Galve, R., Iavicoli, P., Persuy, M. A., Pajot-Augy, E., Marco, M. P., Samitier, J., (2016). Immunochemical strategy for quantification of G-coupled olfactory receptor proteins on natural nanovesicles Colloids and Surfaces B: Biointerfaces 139, 269-276
Cell membrane proteins are involved in a variety of biochemical pathways and therefore constitute important targets for therapy and development of new drugs. Bioanalytical platforms and binding assays using these membrane protein receptors for drug screening or diagnostic require the construction of well-characterized liposome and lipid bilayer arrays that act as support to prevent protein denaturation during biochip processing. Quantification of the protein receptors in the lipid membrane arrays is a key issue in order to produce reproducible and well-characterized chips. Herein, we report a novel immunochemical analytical approach for the quantification of membrane proteins (i.e., G-protein-coupled receptor, GPCR) in nanovesicles (NVs). The procedure allows direct determination of tagged receptors (i.e., c-myc tag) without any previous protein purification or extraction steps. The immunochemical method is based on a microplate ELISA format and quantifies this tag on proteins embedded in NVs with detectability in the picomolar range, using protein bioconjugates as reference standards. The applicability of the method is demonstrated through the quantification of the c-myc-olfactory receptor (OR, c-myc-OR1740) in the cell membrane NVs. The reported method opens the possibility to develop well-characterized drug-screening platforms based on G-coupled proteins embedded on membranes.
JTD Keywords: Bioelectronic nose, Competitive ELISA, G-protein-coupled receptors quantification, Natural vesicles, Olfactory receptors, Transmembrane proteins
Manca, M. L., Castangia, I., Zaru, M., Nácher, A., Valenti, D., Fernàndez-Busquets, X., Fadda, A. M., Manconi, M., (2015). Development of curcumin loaded sodium hyaluronate immobilized vesicles (hyalurosomes) and their potential on skin inflammation and wound restoring Biomaterials 71, 100-109
In the present work new highly biocompatible nanovesicles were developed using polyanion sodium hyaluronate to form polymer immobilized vesicles, so called hyalurosomes. Curcumin, at high concentration was loaded into hyalurosomes and physico-chemical properties and in vitro/in vivo performances of the formulations were compared to those of liposomes having the same lipid and drug content. Vesicles were prepared by direct addition of dispersion containing the polysaccharide sodium hyaluronate and the polyphenol curcumin to a commercial mixture of soy phospholipids, thus avoiding the use of organic solvents. An extensive study was carried out on the physico-chemical features and properties of curcumin-loaded hyalurosomes and liposomes. Cryogenic transmission electron microscopy and small-angle X-ray scattering showed that vesicles were spherical, uni- or oligolamellar and small in size (112-220 nm). The in vitro percutaneous curcumin delivery studies on intact skin showed an improved ability of hyalurosomes to favour a fast drug deposition in the whole skin. Hyalurosomes as well as liposomes were biocompatible, protected in vitro human keratinocytes from oxidative stress damages and promoted tissue remodelling through cellular proliferation and migration. Moreover, in vivo tests underlined a good effectiveness of curcumin-loaded hyalurosomes to counteract 12-O-tetradecanoilphorbol (TPA)-produced inflammation and injuries, diminishing oedema formation, myeloperoxydase activity and providing an extensive skin reepithelization. Thanks to the one-step and environmentally-friendly preparation method, component biocompatibility and safety, good in vitro and in vivo performances, the hyalurosomes appear as promising nanocarriers for cosmetic and pharmaceutical applications.
JTD Keywords: Cell oxidative stress, Hyaluronic acid/Hyaluronan, Phospholipid vesicles, Polyphenols, Skin inflammation, Wound healing
Castangia, I., Nácher, A., Caddeo, C., Merino, V., Díez-Sales, O., Catalán-Latorre, A., Fernàndez-Busquets, X., Fadda, A. M., Manconi, M., (2015). Therapeutic efficacy of quercetin enzyme-responsive nanovesicles for the treatment of experimental colitis in rats Acta Biomaterialia 13, 216-227
Biocompatible quercetin nanovesicles were developed by coating polyethylene glycol-containing vesicles with chitosan and nutriose, aimed at targeting the colon. Uncoated and coated vesicles were prepared using hydrogenated soy phosphatidylcholine and quercetin, a potent natural anti-inflammatory and antioxidant drug. Physicochemical characterization was carried out by light scattering, cryogenic microscopy and X-ray scattering, the results showing that vesicles were predominantly multilamellar and around 130 nm in size. The in vitro release of quercetin was investigated under different pH conditions simulating the environment of the gastrointestinal tract, and confirmed that the chitosan/nutriose coating improved the gastric resistance of vesicles, making them a potential carrier system for colon delivery. The preferential localization of fluorescent vesicles in the intestine was demonstrated using the In Vivo FX PRO Imaging System. Above all, a marked amelioration of symptoms of 2,4,6-trinitrobenzenesulfonic acid-induced colitis was observed in animals treated with quercetin-loaded coated vesicles, favoring the restoration of physiological conditions. Therefore, quercetin-loaded chitosan/nutriose-coated vesicles can represent a valuable therapeutic tool for the treatment of chronic intestinal inflammatory diseases, and presumably a preventive system, due to the synergic action of antioxidant quercetin and beneficial prebiotic effects of the chitosan/nutriose complex.
JTD Keywords: Chitosan/nutriose complex, Colon targeting, Phospholipid vesicles, Quercetin, Rat colitis
Cabrera, I., Elizondo, E., Esteban, O., Corchero, J. L., Melgarejo, M., Pulido, D., Córdoba, A., Moreno, E., Unzueta, U., Vazquez, E., Abasolo, I., Schwartz, S., Villaverde, A., Albericio, F., Royo, M., García-Parajo, M. F., Ventosa, N., Veciana, J., (2013). Multifunctional nanovesicle-bioactive conjugates prepared by a one-step scalable method using CO2-expanded solvents Nano Letters 13, (8), 3766-3774
The integration of therapeutic biomolecules, such as proteins and peptides, in nanovesicles is a widely used strategy to improve their stability and efficacy. However, the translation of these promising nanotherapeutics to clinical tests is still challenged by the complexity involved in the preparation of functional nanovesicles and their reproducibility, scalability, and cost production. Here we introduce a simple one-step methodology based on the use of CO2-expanded solvents to prepare multifunctional nanovesicle- bioactive conjugates. We demonstrate high vesicle-to-vesicle homogeneity in terms of size and lamellarity, batch-to-batch consistency, and reproducibility upon scaling-up. Importantly, the procedure is readily amenable to the integration/encapsulation of multiple components into the nanovesicles in a single step and yields sufficient quantities for clinical research. The simplicity, reproducibility, and scalability render this one-step fabrication process ideal for the rapid and low-cost translation of nanomedicine candidates from the bench to the clinic.
JTD Keywords: Bioconjugates, Compressed fluids, Liposomes, Manomedicine, Nanovesicles, Scale-up, Supercritical fluids
Nussio, M. R., Oncins, G., Ridelis, I., Szili, E., Shapter, J. G., Sanz, F., Voelcker, N. H., (2009). Nanomechanical characterization of phospholipid bilayer islands on flat and porous substrates: A force spectroscopy study Journal of Physical Chemistry B , 113, (30), 10339-10347
In this study, we compare for the first time the nanomechanical properties of lipid bilayer islands on flat and porous surfaces. 1,2-Dimyzistoyl-sn-glycero-3-phosphatidylcholine (DMPC) and 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC) bilayers were deposited on flat (silicon and mica) and porous silicon (pSi) substrate surfaces and examined using atomic force spectroscopy and force volume imaging. Force spectroscopy measurements revealed the effects of the underlying substrate and of the lipid phase on the nanomechanical properties of bilayers islands. For mica and silicon, significant differences in breakthrough force between the center and the edges of bilayer islands were observed for both phospolipids. These differences were more pronounced for DMPC than for DPPC, presumably due to melting effects at the edges of DMPC bilayers. In contrast, bilayer islands deposited on pSi yielded similar breakthrough forces in the central region and along the perimeter of the islands, and those values in turn were similar to those measured along the perimeter of bilayer islands deposited on the flat substrates. The study also demonstrates that pSi is suitable solid support for the formation of pore-spanning phospholipid bilayers with potential applications in transmembrane protein studies, drug delivery, and biosensing.
JTD Keywords: Black lipid-membranes, Gold surfaces, Supported bilayers, Channel activity, Micro-BLMS, Silicon, Proteins, Vesicles, AFM, Temperature measurement