DONATE

Publications

by Keyword: Optomechanical sensors

Munoz-Galan, Helena, Marzoa, Antonio, Bertran, Oscar, Barbera, Francesc, Jimenez-Pique, Emilio, Ahumada, Oscar, Perez-Madrigal, Maria M, Aleman, Carlos, (2024). Optomechanical, Computer Simulation, and Nanoindentation Studies on Tunable Click Hydrogels: Microscopic Insights Acs Applied Polymer Materials 6, 12176-12185

The properties of thiol-yne click polyethylene glycol (PEG)-based hydrogels, which can be tuned by controlling the cis and trans stereochemistry through the gelation conditions, have been investigated at the micro- and nanoscale using optomechanics, atomistic molecular dynamics (MD) simulations, and nanoindentation. Optomechanical measurements on thin films and computer MD simulations have shown that the trans hydrogel is less porous than the cis hydrogel, which is in agreement with both the swelling behavior and the pore size determined for macroscopic 3D hydrogel samples. On the other hand, results from optomechanical measurements using both static and dynamic modes, as well as nanoindentation profiles obtained for thin films adhered to glass substrates, reflect that the trans hydrogel is stiffer than the cis one. Overall, despite the few drawbacks of the techniques employed in this work, from a qualitative point of view, the properties of click PEG-based hydrogels at the micro- and nanoscale follow a behavior similar to that found for 3D macroscopic samples. Considering the wide range of mechanical properties of human tissues (e.g., Young's modulus ranges from 0.1 kPa to many tens of MPa) and the extensive use of hydrogels in applications such as tissue regeneration and tissue-specific drug delivery, the availability of a hydrogel with tunable properties opens the door to targeted biomedicine.

JTD Keywords: Algorithm, Elastic modulu, Ewal, Injectable hydrogels, Molecular dynamics, Molecular-dynamics, Nanoindentation, Optomechanical sensors, Polyethylene glycol hydrogels, Surface stress, Thiol-yneclick hydrogels