by Keyword: combination
Fulgheri, F, Manca, ML, Fernàndez-Busquets, X, Manconi, M, (2023). Analysis of complementarities between nanomedicine and phytodrugs for the treatment of malarial infection Nanomedicine 18, 1681-1696
The use of nanocarriers in medicine, so-called nanomedicine, is one of the most innovative strategies for targeting drugs at the action site and increasing their activity index and effectiveness. Phytomedicine is the oldest traditional method used to treat human diseases and solve health problems. The recent literature on the treatment of malaria infections using nanodelivery systems and phytodrugs or supplements has been analyzed. For the first time, in the present review, a careful look at the considerable potential of nanomedicine in promoting phytotherapeutic efficacy was done, and its key role in addressing a translation through a significant reduction of the current burden of malaria in many parts of the world has been underlined.
JTD Keywords: antiplasmodial activity, bioavailability, chloroquine, combination therapy, discovery, drug-delivery, drug-delivery systems, nanocapsules, nanomedicine, natural molecules, pharmacokinetics, phytomedicine, plasmodium-falciparum, Artemisinin-based combination therapy, Drug-delivery systems, Nanomedicine, Natural molecules, Phytomedicine, Solid lipid nanoparticles
Schierwagen, R, Gu, WY, Brieger, A, Brüne, B, Ciesek, S, Dikic, I, Dimmeler, S, Geisslinger, G, Greten, FR, Hermann, E, Hildt, E, Kempf, VAJ, Klein, S, Koch, I, Mühl, H, Müller, V, Peiffer, KH, Kestner, RI, Piiper, A, Rohde, G, Scholich, K, Schulz, MH, Storf, H, Toptan, T, Vasa-Nicotera, M, Vehreschild, MJGT, Weigert, A, Wild, PJ, Zeuzem, S, Engelmann, C, Schaefer, L, Welsch, C, Trebicka, J, (2023). Pathogenetic mechanisms and therapeutic approaches of acute-to-chronic liver failure American Journal Of Physiology-Cell Physiology 325, C129-C140
Liver cirrhosis is the end stage of all chronic liver diseases and contributes significantly to overall mortality of 2% globally. The age-standardized mortality from liver cirrhosis in Europe is between 10 and 20% and can be explained by not only the development of liver cancer but also the acute deterioration in the patient's overall condition. The development of complications including accumulation of fluid in the abdomen (ascites), bleeding in the gastrointestinal tract (variceal bleeding), bacterial infections, or a decrease in brain function (hepatic encephalopathy) define an acute decompensation that requires therapy and often leads to acute-on-chronic liver failure (ACLF) by different precipitating events. However, due to its complexity and organ-spanning nature, the pathogenesis of ACLF is poorly understood, and the common underlying mechanisms leading to the development of organ dysfunction or failure in ACLF are still elusive. Apart from general intensive care interventions, there are no specific therapy options for ACLF. Liver transplantation is often not possible in these patients due to contraindications and a lack of prioritization. In this review, we describe the framework of the ACLF-I project consortium funded by the Hessian Ministry of Higher Education, Research and the Arts (HMWK) based on existing findings and will provide answers to these open questions.
JTD Keywords: 12/15-lipoxygenase, combination, inflammation, interleukin-22, metabolism, mortality, organ failure, portal-hypertension, receptor, regeneration, systemic inflammation, systems medicine, translational hepatology, Decompensated cirrhosis, Organ failure, Systemic inflammation, Systems medicine, Translational hepatology
Biosca, A, Ramirez, M, Gomez-Gomez, A, Lafuente, A, Iglesias, V, Pozo, OJ, Imperial, S, Fernandez-Busquets, X, (2022). Characterization of Domiphen Bromide as a New Fast-Acting Antiplasmodial Agent Inhibiting the Apicoplastidic Methyl Erythritol Phosphate Pathway Pharmaceutics 14, 1320
The evolution of resistance by the malaria parasite to artemisinin, the key component of the combination therapy strategies that are at the core of current antimalarial treatments, calls for the urgent identification of new fast-acting antimalarials. The apicoplast organelle is a preferred target of antimalarial drugs because it contains biochemical processes absent from the human host. Fosmidomycin is the only drug in clinical trials targeting the apicoplast, where it inhibits the methyl erythritol phosphate (MEP) pathway. Here, we characterized the antiplasmodial activity of domiphen bromide (DB), another MEP pathway inhibitor with a rapid mode of action that arrests the in vitro growth of Plasmodium falciparum at the early trophozoite stage. Metabolomic analysis of the MEP pathway and Krebs cycle intermediates in 20 mu M DB-treated parasites suggested a rapid activation of glycolysis with a concomitant decrease in mitochondrial activity, consistent with a rapid killing of the pathogen. These results present DB as a model compound for the development of new, potentially interesting drugs for future antimalarial combination therapies.
JTD Keywords: antibiotics, antimalarial drugs, domiphen bromide, malaria, plasmodium falciparum, Antibiotics, Antimalarial drugs, Antimalarial-drug, Artemisinin, Combination therapies, Domiphen bromide, Intraerythrocytic stages, Isoprenoid biosynthesis, Malaria, Methyl erythritol phosphate pathway, Nonmevalonate pathway, Plasmodium falciparum, Plasmodium-falciparum apicoplast, Red-blood-cells, Targeted delivery
Montero, J, Haq, R, (2022). Adapted to Survive: Targeting Cancer Cells with BH3 Mimetics Cancer Discovery 12, 1217-1232
A hallmark of cancer is cell death evasion, underlying suboptimal responses to chemotherapy, targeted agents, and immunotherapies. The approval of the anti apoptotic BCL2 antagonist venetoclax has fi nally validated the potential of targeting apoptotic pathways in patients with cancer. Nevertheless, pharmacologic modulators of cell death have shown markedly varied responses in preclinical and clinical studies. Here, we review emerging concepts in the use of this class of therapies. Building on these observations, we propose that treatment-induced changes in apoptotic dependency, rather than pretreatment dependencies, will need to be recognized and targeted to realize the precise deployment of these new pharmacologic agents. Signifi cance: Targeting antiapoptotic family members has proven effi cacious and tolerable in some cancers, but responses are infrequent, particularly for patients with solid tumors. Biomarkers to aid patient selection have been lacking. Precision functional approaches that overcome adaptive resistance to these compounds could drive durable responses to chemotherapy, targeted therapy, and immunotherapies.
JTD Keywords: Anti-apoptotic mcl-1, Bcl-x-l, Bim expression, Chemotherapy sensitivity, Combination strategies, Family proteins, Multiple-myeloma, Oblimersen sodium, Phase-i, Venetoclax resistance
Alcon, C, Martín, F, Prada, E, Mora, J, Soriano, A, Guillén, G, Gallego, S, Roma, J, Samitier, J, Villanueva, A, Montero, J, (2022). MEK and MCL-1 sequential inhibition synergize to enhance rhabdomyosarcoma treatment Cell Death Discov 8, 172
Targeted agents have emerged as promising molecules for cancer treatment, but most of them fail to achieve complete tumor regression or attain durable remissions due to tumor adaptations. We used dynamic BH3 profiling to identify targeted agents effectiveness and anti-apoptotic adaptations upon targeted treatment in rhabdomyosarcoma. We focused on studying the use of BH3 mimetics to specifically inhibit pro-survival BCL-2 family proteins, overwhelm resistance to therapy and prevent relapse. We observed that the MEK1/2 inhibitor trametinib rapidly depleted the pro-apoptotic protein NOXA, thus increasing MCL-1 availability. Indeed, we found that the MCL-1 inhibitor S63845 synergistically enhanced trametinib cytotoxicity in rhabdomyosarcoma cells in vitro and in vivo. In conclusion, our findings indicate that the combination of a BH3 mimetic targeting MCL-1 with trametinib improves efficiency on rhabdomyosarcoma by blocking tumor adaptation to treatment.
JTD Keywords: apoptosis, bcl-2, combination, expression, pathway, resistance, survival, therapy, tumors, Histone deacetylase inhibitor
Guasch-Girbau, A, Fernandez-Busquets, X, (2021). Review of the current landscape of the potential of nanotechnology for future malaria diagnosis, treatment, and vaccination strategies Pharmaceutics 13, 2189
Malaria eradication has for decades been on the global health agenda, but the causative agents of the disease, several species of the protist parasite Plasmodium, have evolved mechanisms to evade vaccine-induced immunity and to rapidly acquire resistance against all drugs entering clinical use. Because classical antimalarial approaches have consistently failed, new strategies must be explored. One of these is nanomedicine, the application of manipulation and fabrication technology in the range of molecular dimensions between 1 and 100 nm, to the development of new medical solutions. Here we review the current state of the art in malaria diagnosis, prevention, and therapy and how nanotechnology is already having an incipient impact in improving them. In the second half of this review, the next generation of antimalarial drugs currently in the clinical pipeline is presented, with a definition of these drugs’ target product profiles and an assessment of the potential role of nanotechnology in their development. Opinions extracted from interviews with experts in the fields of nanomedicine, clinical malaria, and the economic landscape of the disease are included to offer a wider scope of the current requirements to win the fight against malaria and of how nanoscience can contribute to achieve them. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.
JTD Keywords: antibody-bearing liposomes, antimalarial drugs, combination therapies, drug-delivery strategies, malaria diagnosis, malaria prophylaxis, malaria therapy, nanocarriers, nanomedicine, nanoparticles, nanotechnology, plasmodium, plasmodium-falciparum, red-blood-cells, targeted delivery, targeted drug delivery, vitro antimalarial activity, Antimalarial drugs, Isothermal amplification lamp, Malaria diagnosis, Malaria prophylaxis, Malaria therapy, Nanocarriers, Nanomedicine, Nanotechnology, Plasmodium, Targeted drug delivery
Calistri, A, Luganini, A, Mognetti, B, Elder, E, Sibille, G, Conciatori, V, Del Vecchio, C, Sainas, S, Boschi, D, Montserrat, N, Mirazimi, A, Lolli, ML, Gribaudo, G, Parolin, C, (2021). The new generation hdhodh inhibitor meds433 hinders the in vitro replication of sars-cov-2 and other human coronaviruses Microorganisms 9, 1731
Although coronaviruses (CoVs) have long been predicted to cause zoonotic diseases and pandemics with high probability, the lack of effective anti-pan-CoVs drugs rapidly usable against the emerging SARS-CoV-2 actually prevented a promptly therapeutic intervention for COVID-19. Development of host-targeting antivirals could be an alternative strategy for the control of emerging CoVs infections, as they could be quickly repositioned from one pandemic event to another. To contribute to these pandemic preparedness efforts, here we report on the broad-spectrum CoVs antiviral activity of MEDS433, a new inhibitor of the human dihydroorotate dehydrogenase (hDHODH), a key cellular enzyme of the de novo pyrimidine biosynthesis pathway. MEDS433 in-hibited the in vitro replication of hCoV-OC43 and hCoV-229E, as well as of SARS-CoV-2, at low nanomolar range. Notably, the anti-SARS-CoV-2 activity of MEDS433 against SARS-CoV-2 was also observed in kidney organoids generated from human embryonic stem cells. Then, the antiviral activity of MEDS433 was reversed by the addition of exogenous uridine or the product of hDHODH, the orotate, thus confirming hDHODH as the specific target of MEDS433 in hCoVs-infected cells. Taken together, these findings suggest MEDS433 as a potential candidate to develop novel drugs for COVID-19, as well as broad-spectrum antiviral agents exploitable for future CoVs threats.
JTD Keywords: antiviral activity, biosynthesis, broad-spectrum antiviral, combination treatment, coronavirus, dipyridamole, hdhodh inhibitor, organoids, pyrimidine, pyrimidine biosynthesis, sars-cov-2, target, virus-infection, Antiviral activ-ity, Broad-spectrum antiviral, Combination treatment, Coronavirus, Gene-expression, Hdhodh inhibitor, Organoids, Pyrimidine biosynthesis, Sars-cov-2
Oliveira, LVF, Apostólico, N, Uriarte, JJ, da Palma, RK, Prates, RA, Deana, AM, Ferreira, LR, Afonso, JPR, Vieira, RD, de Oliveira, MC, Navajas, D, Farré, R, Lopes-Martins, RAB, (2021). Photodynamic Therapy in the Extracellular Matrix of Mouse Lungs: Preliminary Results of an Alternative Tissue Sterilization Process International Journal Of Photoenergy 2021, 5578387
Lung transplantation is one of the most difficult and delicate procedures among organ transplants. For the success of the procedure and survival of the new organ, the sterilization step for acellular lungs prior to recellularization is important to ensure that they are free of any risk of transmitting infections from the donor to the recipient subject. However, there are no available information concerning the lung mechanical parameters after sterilizing photodynamic therapy. The aim of this study was to evaluate the extracellular matrix (ECM) and lung mechanical parameters of decellularized lungs undergoing sterilizing photodynamic therapy (PDT). Besides, we also analyzed the lung after controlled infection with C. albicans in order to evaluate the effectiveness of PDT. The lung mechanical evaluation parameters, resistance (RL) and elastance (EL), exhibited no significant differences between groups. In addition, there were no PDT-induced changes in lung properties, with maintenance of the viscoelastic behavior of the lung scaffold after 1 h exposure to PDT. The ECM components remained virtually unchanged in the acellular lungs of both groups. We also showed that there was a reduction in fungal infection population after 45 minutes of PDT. However, more studies should be performed to establish and verify the effectiveness of PDT as a possible means for sterilizing lung scaffolds. This manuscript was presented as a master thesis of Nadua Apostólico at the postgraduate program in rehabilitation sciences, University Nove de Julho - UNINOVE.
JTD Keywords: candida, combination, inactivation, infections, mechanics, Gamma-irradiation
Monteil, V, Dyczynski, M, Lauschke, VM, Kwon, H, Wirnsberger, G, Youhanna, S, Zhang, HB, Slutsky, AS, del Pozo, CH, Horn, M, Montserrat, N, Penninger, JM, Mirazimi, A, (2021). Human soluble ACE2 improves the effect of remdesivir in SARS-CoV-2 infection Embo Molecular Medicine 13, e13426
© 2020 The Authors. Published under the terms of the CC BY 4.0 license There is a critical need for safe and effective drugs for COVID-19. Only remdesivir has received authorization for COVID-19 and has been shown to improve outcomes but not decrease mortality. However, the dose of remdesivir is limited by hepatic and kidney toxicity. ACE2 is the critical cell surface receptor for SARS-CoV-2. Here, we investigated additive effect of combination therapy using remdesivir with recombinant soluble ACE2 (high/low dose) on Vero E6 and kidney organoids, targeting two different modalities of SARS-CoV-2 life cycle: cell entry via its receptor ACE2 and intracellular viral RNA replication. This combination treatment markedly improved their therapeutic windows against SARS-CoV-2 in both models. By using single amino-acid resolution screening in haploid ES cells, we report a singular critical pathway required for remdesivir toxicity, namely, Adenylate Kinase 2. The data provided here demonstrate that combining two therapeutic modalities with different targets, common strategy in HIV treatment, exhibit strong additive effects at sub-toxic concentrations. Our data lay the groundwork for the study of combinatorial regimens in future COVID-19 clinical trials.
JTD Keywords: clinical trial, combination therapy, covid-19, Clinical trial, Combination therapy, Covid-19, Treatment
Sola-Barrado, B., M. Leite, D., Scarpa, E., Duro-Castano, A., Battaglia, G., (2020). Combinatorial intracellular delivery screening of anticancer drugs Molecular Pharmaceutics 17, (12), 4709-4714
Conventional drug solubilization strategies limit the understanding of the full potential of poorly water-soluble drugs during drug screening. Here, we propose a screening approach in which poorly water-soluble drugs are entrapped in poly(2-(methacryloyloxyethyl phosphorylcholine)-poly(2-(diisopropylaminoethyl methacryate) (PMPC-PDPA) polymersomes (POs) to enhance drug solubility and facilitate intracellular delivery. By using a human pediatric glioma cell model, we demonstrated that PMPC-PDPA POs mediated intracellular delivery of cytotoxic and epigenetic drugs by receptor-mediated endocytosis. Additionally, when delivered in combination, drug-loaded PMPC-PDPA POs triggered both an enhanced drug efficacy and synergy compared to that of a conventional combinatorial screening. Hence, our comprehensive synergy analysis illustrates that our screening methodology, in which PMPC-PDPA POs are used for intracellular codelivery of drugs, allows us to identify potent synergistic profiles of anticancer drugs.
JTD Keywords: Combination therapy, Drug screening, Drug solubilization, Intracellular drug delivery, Polymeric nanoparticles, Synergy analysis
Biosca, A., Dirscherl, L., Moles, E., Imperial, S., Fernàndez-Busquets, X., (2019). An immunoPEGliposome for targeted antimalarial combination therapy at the nanoscale Pharmaceutics 11, (7), 341
Combination therapies, where two drugs acting through different mechanisms are administered simultaneously, are one of the most efficient approaches currently used to treat malaria infections. However, the different pharmacokinetic profiles often exhibited by the combined drugs tend to decrease treatment efficacy as the compounds are usually eliminated from the circulation at different rates. To circumvent this obstacle, we have engineered an immunoliposomal nanovector encapsulating hydrophilic and lipophilic compounds in its lumen and lipid bilayer, respectively. The antimalarial domiphen bromide has been encapsulated in the liposome membrane with good efficiency, although its high IC50 of ca. 1 μM for living parasites complicates its use as immunoliposomal therapy due to erythrocyte agglutination. The conjugation of antibodies against glycophorin A targeted the nanocarriers to Plasmodium-infected red blood cells and to gametocytes, the sole malaria parasite stage responsible for the transmission from the human to the mosquito vector. The antimalarials pyronaridine and atovaquone, which block the development of gametocytes, have been co-encapsulated in glycophorin A-targeted immunoliposomes. The co-immunoliposomized drugs have activities significantly higher than their free forms when tested in in vitro Plasmodium falciparum cultures: Pyronaridine and atovaquone concentrations that, when encapsulated in immunoliposomes, resulted in a 50% inhibition of parasite growth had no effect on the viability of the pathogen when used as free drugs.
JTD Keywords: Combination therapy, Immunoliposomes, Malaria, Nanomedicine, Nanotechnology, Plasmodium, Targeted drug delivery
Gumí-Audenis, Berta, Costa, Luca, Carlá, Francesco, Comin, Fabio, Sanz, Fausto, Giannotti, M. I., (2016). Structure and nanomechanics of model membranes by atomic force microscopy and spectroscopy: Insights into the role of cholesterol and sphingolipids Membranes , 6, (4), 58
Biological membranes mediate several biological processes that are directly associated with their physical properties but sometimes difficult to evaluate. Supported lipid bilayers (SLBs) are model systems widely used to characterize the structure of biological membranes. Cholesterol (Chol) plays an essential role in the modulation of membrane physical properties. It directly influences the order and mechanical stability of the lipid bilayers, and it is known to laterally segregate in rafts in the outer leaflet of the membrane together with sphingolipids (SLs). Atomic force microscope (AFM) is a powerful tool as it is capable to sense and apply forces with high accuracy, with distance and force resolution at the nanoscale, and in a controlled environment. AFM-based force spectroscopy (AFM-FS) has become a crucial technique to study the nanomechanical stability of SLBs by controlling the liquid media and the temperature variations. In this contribution, we review recent AFM and AFM-FS studies on the effect of Chol on the morphology and mechanical properties of model SLBs, including complex bilayers containing SLs. We also introduce a promising combination of AFM and X-ray (XR) techniques that allows for in situ characterization of dynamic processes, providing structural, morphological, and nanomechanical information
JTD Keywords: Atomic force microscopy, Force spectroscopy, Lipid membranes, Supported lipid bilayers, Nanomechanics, Cholesterol, Sphingolipids, Membrane structure, XR-AFM combination
Moles, E., Moll, K., Ch'ng, J. H., Parini, P., Wahlgren, M., Fernàndez-Busquets, X., (2016). Development of drug-loaded immunoliposomes for the selective targeting and elimination of rosetting Plasmodium falciparum-infected red blood cells Journal of Controlled Release 241, 57-67
Parasite proteins exported to the surface of Plasmodium falciparum-parasitized red blood cells (pRBCs) have a major role in severe malaria clinical manifestation, where pRBC cytoadhesion and rosetting processes have been strongly linked with microvascular sequestration while avoiding both spleen filtration and immune surveillance. The parasite-derived and pRBC surface-exposed PfEMP1 protein has been identified as one of the responsible elements for rosetting and, therefore, considered as a promising vaccine candidate for the generation of rosette-disrupting antibodies against severe malaria. However, the potential role of anti-rosetting antibodies as targeting molecules for the functionalization of antimalarial drug-loaded nanovectors has never been studied. Our manuscript presents a proof-of-concept study where the activity of an immunoliposomal vehicle with a dual performance capable of specifically recognizing and disrupting rosettes while simultaneously eliminating those pRBCs forming them has been assayed in vitro. A polyclonal antibody against the NTS-DBL1α N-terminal domain of a rosetting PfEMP1 variant has been selected as targeting molecule and lumefantrine as the antimalarial payload. After 30 min incubation with 2 μM encapsulated drug, a 70% growth inhibition for all parasitic forms in culture (IC50: 414 nM) and a reduction in ca. 60% of those pRBCs with a rosetting phenotype (IC50: 747 nM) were achieved. This immunoliposomal approach represents an innovative combination therapy for the improvement of severe malaria therapeutics having a broader spectrum of activity than either anti-rosetting antibodies or free drugs on their own.
JTD Keywords: Combination therapy, Immunoliposomes, Malaria, Nanomedicine, Rosetting, Targeted drug delivery
Fernàndez-Busquets, X., (2016). Novel strategies for Plasmodium-targeted drug delivery Expert Opinion on Drug Delivery , 13, (7), 919-922
JTD Keywords: Anopheles, Antimalarial drugs, Combination therapies, Heparin, Malaria, Mosquitoes, Nanomedicine, Nanotechnology, Plasmodium, Poly(amidoamine)s, Polymers, Targeted drug delivery