DONATE

Publications

by Keyword: Reactors

Razavi, Seyed Ali, Fargas, Gemma, Vilella, Tania, Serrano, Isabel, Laguna-Bercero, Miguel Angel, Llanes, Luis, Rodriguez, Daniel, Ginebra, Maria-Pau, Llorca, Jordi, Morales, Miguel, (2025). Direct Ink Writing of cobalt-zirconia monoliths for catalytic applications: A novel single-step fabrication approach Journal Of The European Ceramic Society 45, 117137

Additive manufacturing technologies are revolutionizing the fabrication of ceramic catalysts through hierarchical design to enhance catalytic performance and simultaneously improving the efficiency of the manufacturing process by decreasing the initial investment and production steps. This work proposes a fabrication process of cobalt-zirconia monoliths based on Direct-Ink Writing of Co-enriched hydrogel-based ceramic inks, and the debinding and sintering at 600 degrees C in a single thermal treatment. The effect of Co precursor amount (3.0 -7.0 wt% Co) on the rheological properties of inks and the catalytic performance in ethanol steam reforming is investigated. The results reveal the successful incorporation of Co into rectilinear monoliths with 50% infill, obtaining strongly Co-rich surfaces. The remarkable catalytic performance of the 5.0 wt% Co monolith at 300-600 degrees C confirms the feasibility of this novel single-step approach, reaching an appropriate balance between catalytic activity and printability. This outcome may represent a push towards the fabrication of fully 3D-printed monolithic catalysts.

JTD Keywords: Additive manufacturing, Catalyst ethanol steam reforming, Cleanup, Co, Combustion, Direct-ink writing, Hydrogen productio, Ionically conductive supports, Nanoparticles, Oxidation, Rama, Reactors, Sulfur, Zirconia


Koch, M. A., Engel, E., Planell, J. A., Lacroix, D., (2008). Cell seeding and characterisation of PLA/glass composite scaffolds for bone tissue engineering Journal of Biomechanics 16th Congress, European Society of Biomechanics , Elsevier (Lucerne, Switzerland) 41, (Supplement 1), S162

In this study polymer-glass composite scaffolds were characterized by permeability and porosity, two important properties for the use in perfusion bioreactors. These scaffolds were seeded with osteoblast-like cells to assess the efficiency of the used bioreactor. The used PLA/glass composite scaffolds are adequate for the perfusion culture. The high porosity and pore interconnectivity allow an even cell distribution and incorporation of a high cell number. For optimisation of the perfusion bioreactor system, further research has to be dedicated to the cell seeding and culture.

JTD Keywords: Biomedical materials, Bioreactors, Bone, Cellular biophysics, Composite materials, Orthopaedics, Permeability, Polymers, Porosity, Porous materials, Tissue engineering