DONATE

Publications

by Keyword: Receptor-binding domains

Martí, D, Alemán, C, Ainsley, J, Ahumada, O, Torras, J, (2022). IgG1-b12–HIV-gp120 Interface in Solution: A Computational Study Journal Of Chemical Information And Modeling 62, 359-371

The use of broadly neutralizing antibodies against human immunodeficiency virus type 1 (HIV-1) has been shown to be a promising therapeutic modality in the prevention of HIV infection. Understanding the b12-gp120 binding mechanism under physiological conditions may assist the development of more broadly effective antibodies. In this work, the main conformations and interactions between the receptor-binding domain (RBD) of spike glycoprotein gp120 of HIV-1 and the IgG1-b12 mAb are studied. Accelerated molecular dynamics (aMD) and ab initio hybrid molecular dynamics have been combined to determine the most persistent interactions between the most populated conformations of the antibody-antigen complex under physiological conditions. The results show the most persistent receptor-binding mapping in the conformations of the antibody-antigen interface in solution. The binding-free-energy decomposition reveals a small enhancement in the contribution played by the CDR-H3 region to the b12-gp120 interface compared to the crystal structure.

JTD Keywords: antibody, complex, functionals, gp120 envelope glycoprotein, hiv, immunodeficiency-virus, noncovalent interactions, simulations, software integration, Ab initio, Accelerated molecular dynamics, Accelerated molecular-dynamics, Antibodies, Antigens, Binding energy, Binding mechanisms, Computational studies, Crystal structure, Diseases, Free energy, Hiv infection, Human immunodeficiency virus, Molecular dynamics, Neutralizing antibodies, Physiological condition, Physiology, Receptor-binding domains, Therapeutic modality, Viruses


Marti, D, Martin-Martinez, E, Torras, J, Bertran, O, Turon, P, Aleman, C, (2021). In silico antibody engineering for SARS-CoV-2 detection Computational And Structural Biotechnology Journal 19, 5525-5534

Engineered immunoglobulin-G molecules (IgGs) are of wide interest for the development of detection elements in protein-based biosensors with clinical applications. The strategy usually employed for the de novo design of such engineered IgGs consists on merging fragments of the three-dimensional structure of a native IgG, which is immobilized on the biosensor surface, and of an antibody with an exquisite target specificity and affinity. In this work conventional and accelerated classical molecular dynamics (cMD and aMD, respectively) simulations have been used to propose two IgG-like antibodies for COVID-19 detection. More specifically, the crystal structure of the IgG1 B12 antibody, which inactivates the human immunodeficiency virus-1, has been merged with the structure of the antibody CR3022 Fab tightly bounded to SARS-CoV-2 receptor-binding domain (RBD) and the structure of the 5309 antibody Fab fragment complexed with SARS-CoV-2 RBD. The two constructed antibodies, named IgG1-CR3022 and IgG1-S309, respectively, have been immobilized on a stable gold surface through a linker. Analyses of the influence of both the merging strategy and the substrate on the stability of the two constructs indicate that the IgG1-S309 antibody better preserves the neutralizing structure than the IgG1-CR3022 one. Overall, results indicate that the IgG1-S309 is appropriated for the generation of antibody based sensors for COVID-19 diagnosis. (C) 2021 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Biotechnology.

JTD Keywords: cr3022, igg1, molecular engineering, s309, Antibodies, Antibody engineering, Biosensors, Chemical detection, Clinical application, Cov, Cr3022, Crystal structure, Design, Diseases, Gold nanoparticles, Igg1, Igg1 antibody, Immobilization, Immunoglobulin g, Immunosensor, In-silico, Merging, Molecular dynamics, Molecular engineering, Orientation, Protein-based biosensors, Receptor-binding domains, S309, Sars, Sensor, Spike protein, Target, Vaccine, Viruses