DONATE

Publications

by Keyword: STM Break-Junction

Aragonès, A. C., Aravena, D., Cerdá, J. I., Acís-Castillo, Z., Li, H., Real, J. A., Sanz, F., Hihath, J., Ruiz, E., Díez-Pérez, I., (2016). Large conductance switching in a single-molecule device through room temperature spin-dependent transport Nano Letters 16, (1), 218-226

Controlling the spin of electrons in nanoscale electronic devices is one of the most promising topics aiming at developing devices with rapid and high density information storage capabilities. The interface magnetism or spinterface resulting from the interaction between a magnetic molecule and a metal surface, or vice versa, has become a key ingredient in creating nanoscale molecular devices with novel functionalities. Here, we present a single-molecule wire that displays large (>10000%) conductance switching by controlling the spin-dependent transport under ambient conditions (room temperature in a liquid cell). The molecular wire is built by trapping individual spin crossover FeII complexes between one Au electrode and one ferromagnetic Ni electrode in an organic liquid medium. Large changes in the single-molecule conductance (>100-fold) are measured when the electrons flow from the Au electrode to either an α-up or a β-down spin-polarized Ni electrode. Our calculations show that the current flowing through such an interface appears to be strongly spin-polarized, thus resulting in the observed switching of the single-molecule wire conductance. The observation of such a high spin-dependent conductance switching in a single-molecule wire opens up a new door for the design and control of spin-polarized transport in nanoscale molecular devices at room temperature.

JTD Keywords: Density functional calculations, Magnetoresistance, Single-molecule junctions, Spin orbit coupling, Spin-crossover complexes, Spinterface, STM break-junction


Ponce, I., Aragonès, A. C., Darwish, Nadrim, Pla-Vilanova, P., Oñate, R., Rezende, M. C., Zagal, J. H., Sanz, F., Pavez, J., Díez-Pérez, I., (2015). Building nanoscale molecular wires exploiting electrocatalytic interactions Electrochimica Acta 179, 611-167

Herein, we present a novel method to design nanoscale molecular wires by exploiting well-established electrocatalytic molecular platforms based on metallophthalocyanine blocks. Metallophthalocyanines exhibit high catalytic activity for a wide variety of electrochemical reactions of practical interests. To this aim, metallophthalocyanine molecules can be attached to an electrode surface via a conjugated mercaptopyridine axial ligand that provides (i) stable chemical binding to the metal surface through the thiol-anchoring group, and (ii) a good electrical communication between the metallophthalocyanine ring and the electrode surface. Our previous work demonstrates that long mercaptopyridinium blocks act as excellent linkers in such electrocatalytic platform, resulting in an optimal electrocatalytic activity of the metallophthalocyanine unit. Here we profit from this optimized electrocatalytic molecular platform to design new molecular wires that connect a metal nanoscale junction in a highly efficient and tunable way. To this aim, we use an STM break-junction approach to control the formation of a nanometric gap between two Au electrodes, both functionalized with mercaptopyridinium (bottom) and mercaptopyridine (top). When metallophthalocyanine is introduced into the functionalized metal nanojunction, stable molecular connections between the two electrodes are formed through axial coordination to the top and bottom pyridine moieties. We show that the highest conductance of the resulting nanoscale molecular wire corresponds to an Fe-phthalocyanine as compare to a Cu-phthalocyanine, which follows the electrocatalytic trend for such molecular systems. These results not only demonstrate a new strategy to design new families of highly conductive and tunable nanoscale molecular wires, but it also brings a new nanoscale electrical platform to help understanding some fundamental mechanistic aspects of molecular electrocatalysis.

JTD Keywords: Single-molecule wires, Metallophthalocyanine, Electrocatalytic molecular platform, Molecular Electronics, STM break-junction


Darwish, Nadim., Aragonès, A. C., Darwish, T., Ciampi, S., Díez-Pérez, I., (2014). Multi-responsive photo- and chemo-electrical single-molecule switches Nano Letters 14, (12), 7064-7070

Incorporating molecular switches as the active components in nanoscale electrical devices represents a current challenge in molecular electronics. It demands key requirements that need to be simultaneously addressed including fast responses to external stimuli and stable attachment of the molecules to the electrodes while mimicking the operation of conventional electronic components. Here, we report a single-molecule switching device that responds electrically to optical and chemical stimuli. A light pointer or a chemical signal can rapidly and reversibly induce the isomerization of bifunctional spiropyran derivatives in the bulk reservoir and, consequently, switch the electrical conductivity of the single-molecule device between a low and a high level. The spiropyran derivatives employed are chemically functionalized such that they can respond in fast but practical time scales. The unique multistimuli response and the synthetic versatility to control the switching schemes of this single-molecule device suggest spiropyran derivatives as key candidates for molecular circuitry.

JTD Keywords: Molecular Electronics, Multi-Responsive Molecular Switches, Photo- and Chemo-Switches Spiropyran, Single-Molecule Conductance, STM Break-Junction, Electronic equipment, Isomerization, Molecular electronics, Photochromism, Electrical conductivity, Electronic component, Molecular switches, Single-molecule conductances, Single-molecule devices, Spiropyran derivatives, Spiropyrans, STM Break-Junction, Molecules