DONATE

Publications

by Keyword: Sniffing

Ziyatdinov, Andrey, Fonollosa, Jordi, Fernández, Luis, Gutiérrez-Gálvez, Agustín, Marco, Santiago, Perera, Alexandre, (2015). Data set from gas sensor array under flow modulation Data in Brief 3, 131-136

Abstract Recent studies in neuroscience suggest that sniffing, namely sampling odors actively, plays an important role in olfactory system, especially in certain scenarios such as novel odorant detection. While the computational advantages of high frequency sampling have not been yet elucidated, here, in order to motivate further investigation in active sampling strategies, we share the data from an artificial olfactory system made of 16 MOX gas sensors under gas flow modulation. The data were acquired on a custom set up featured by an external mechanical ventilator that emulates the biological respiration cycle. 58 samples were recorded in response to a relatively broad set of 12 gas classes, defined from different binary mixtures of acetone and ethanol in air. The acquired time series show two dominant frequency bands: the low-frequency signal corresponds to a conventional response curve of a sensor in response to a gas pulse, and the high-frequency signal has a clear principal harmonic at the respiration frequency. The data are related to the study in [1], and the data analysis results reported there should be considered as a reference point.

JTD Keywords: Gas sensor array, MOX sensor, Flow modulation, Early detection, Biomimetics, Respiration, Sniffing


Ziyatdinov, Andrey, Fonollosa, Jordi, Fernánndez, Luis, Gutierrez-Gálvez, Agustín, Marco, Santiago, Perera, Alexandre, (2015). Bioinspired early detection through gas flow modulation in chemo-sensory systems Sensors and Actuators B: Chemical 206, 538-547

Abstract The design of bioinspired systems for chemical sensing is an engaging line of research in machine olfaction. Developments in this line could increase the lifetime and sensitivity of artificial chemo-sensory systems. Such approach is based on the sensory systems known in live organisms, and the resulting developed artificial systems are targeted to reproduce the biological mechanisms to some extent. Sniffing behaviour, sampling odours actively, has been studied recently in neuroscience, and it has been suggested that the respiration frequency is an important parameter of the olfactory system, since the odour perception, especially in complex scenarios such as novel odourants exploration, depends on both the stimulus identity and the sampling method. In this work we propose a chemical sensing system based on an array of 16 metal-oxide gas sensors that we combined with an external mechanical ventilator to simulate the biological respiration cycle. The tested gas classes formed a relatively broad combination of two analytes, acetone and ethanol, in binary mixtures. Two sets of low-frequency and high-frequency features were extracted from the acquired signals to show that the high-frequency features contain information related to the gas class. In addition, such information is available at early stages of the measurement, which could make the technique suitable in early detection scenarios. The full data set is made publicly available to the community.11 http://archive.ics.uci.edu/ml/datasets/Gas+sensor+array+under+flow+modulation.

JTD Keywords: Gas sensor array, MOX sensor, Flow modulation, Early detection, Biomimetics, Sniffing