DONATE

Publications

by Keyword: Time-lapse

Parra, Albert, Denkova, Denitza, Burgos-Artizzu, Xavier P, Aroca, Ester, Casals, Marc, Godeau, Amelie, Ares, Miguel, Ferrer-Vaquer, Anna, Massafret, Ot, Oliver-Vila, Irene, Mestres, Enric, Acacio, Monica, Costa-Borges, Nuno, Rebollo, Elena, Chiang, Hsiao Ju, Fraser, Scott E, Cutrale, Francesco, Seriola, Anna, Ojosnegros, Samuel, (2024). METAPHOR: Metabolic evaluation through phasor-based hyperspectral imaging and organelle recognition for mouse blastocysts and oocytes Proceedings Of The National Academy Of Sciences Of The United States Of America 121, e2315043121

Only 30% of embryos from in vitro fertilized oocytes successfully implant and develop to term, leading to repeated transfer cycles. To reduce time-to-pregnancy and stress for patients, there is a need for a diagnostic tool to better select embryos and oocytes based on their physiology. The current standard employs brightfield imaging, which provides limited physiological information. Here, we introduce METAPHOR: Metabolic Evaluation through Phasor-based Hyperspectral Imaging and Organelle Recognition. This non-invasive, label-free imaging method combines two-photon illumination and AI to deliver the metabolic profile of embryos and oocytes based on intrinsic autofluorescence signals. We used it to classify i) mouse blastocysts cultured under standard conditions or with depletion of selected metabolites (glucose, pyruvate, lactate); and ii) oocytes from young and old mouse females, or in vitro-aged oocytes. The imaging process was safe for blastocysts and oocytes. The METAPHOR classification of control vs. metabolites-depleted embryos reached an area under the ROC curve (AUC) of 93.7%, compared to 51% achieved for human grading using brightfield imaging. The binary classification of young vs. old/in vitro-aged oocytes and their blastulation prediction using METAPHOR reached an AUC of 96.2% and 82.2%, respectively. Finally, organelle recognition and segmentation based on the flavin adenine dinucleotide signal revealed that quantification of mitochondria size and distribution can be used as a biomarker to classify oocytes and embryos. The performance and safety of the method highlight the accuracy of noninvasive metabolic imaging as a complementary approach to evaluate oocytes and embryos based on their physiology.

JTD Keywords: Ai, Consumption, Culture, Embryo development, Fluorescence, Hyperspectral imagin, Implantation, In vitro fertilization, Infertility, Label-free imaging, Microscopy, Morphokinetics, Oxygen concentrations, Selectio, Time-lapse


Mencattini, A., Di Giuseppe, D., D'Orazio, M., Rizzuto, V., Manu Pereira, M. M., Colomba Comes, M., Lopez-Martinez, M. J., Samitier, J., Martinelli, E., (2020). A microfluidic device for shape measurement in red blood cells (RBCs) IEEE International Workshop on Medical Measurement and Applications (MEMEA) , IEEE (Bari, Italy) , 1-5

Modern optical sensors coupled with time-lapse microscopy devices and dedicated software tools allow the miniaturization of laboratories for biological experiments leading to the Organ-On-Chip (OoC) framework. OoCs allow performing massive measurements on a large number of cells under the assumption of reproducibility conditions, permitting to investigate the cell dynamics in terms of motility and shape changes over time. In this work, we present the OoC platform used in a preliminary study of the Rare Haemolytic Anaemia (RHA) disease, a group of rare diseases characterized by haemolysis, which is the premature loss of red blood cells (RBCs). Preliminary results demonstrate the effectiveness of shape measurement for the diagnosis of RHA.

JTD Keywords: Anaemia diagnosis, Cell tracking, Plasticity measurement, Time-lapse microscopy


Bosch, M., Castro, J., Sur, M., Hayashi, Y., (2017). Photomarking relocalization technique for correlated two-photon and electron microcopy imaging of single stimulated synapses Synapse Development - Methods and Protocols (Methods in Molecular Biology) (ed. Poulopoulos , A.), Humana Press (New York, USA) 1538, 185-214

Synapses learn and remember by persistent modifications of their internal structures and composition but, due to their small size, it is difficult to observe these changes at the ultrastructural level in real time. Two-photon fluorescence microscopy (2PM) allows time-course live imaging of individual synapses but lacks ultrastructural resolution. Electron microscopy (EM) allows the ultrastructural imaging of subcellular components but cannot detect fluorescence and lacks temporal resolution. Here, we describe a combination of procedures designed to achieve the correlated imaging of the same individual synapse under both 2PM and EM. This technique permits the selective stimulation and live imaging of a single dendritic spine and the subsequent localization of the same spine in EM ultrathin serial sections. Landmarks created through a photomarking method based on the 2-photon-induced precipitation of an electrodense compound are used to unequivocally localize the stimulated synapse. This technique was developed to image, for the first time, the ultrastructure of the postsynaptic density in which long-term potentiation was selectively induced just seconds or minutes before, but it can be applied for the study of any biological process that requires the precise relocalization of micron-wide structures for their correlated imaging with 2PM and EM.

JTD Keywords: Correlated imaging, DAB, Dendritic spine, Photobranding, Photoetching, Photomarking, Postsynaptic density, Serial-section transmission electron microscopy, Synapse, Time-lapse live two-photon fluorescence microscopy