by Keyword: Ubiquitin
Mughal, Sheeza, Sabater-Arcis, Maria, Artero, Ruben, Ramon-Azcon, Javier, Fernandez-Costa, Juan M, (2024). Taurine activates the AKT-mTOR axis to restore muscle mass and contractile strength in human 3D in vitro models of steroid myopathy Disease Models & Mechanisms 17, dmm050540
Steroid myopathy is a clinically challenging condition exacerbated by prolonged corticosteroid use or adrenal tumors. In this study, we engineered a functional three-dimensional (3D) in vitro skeletal muscle model to investigate steroid myopathy. By subjecting our bioengineered muscle tissues to dexamethasone treatment, we reproduced the molecular and functional aspects of this disease. Dexamethasone caused a substantial reduction in muscle force, myotube diameter and induced fatigue. We observed nuclear translocation of the glucocorticoid receptor (GCR) and activation of the ubiquitin-proteasome system within our model, suggesting their coordinated role in muscle atrophy. We then examined the therapeutic potential of taurine in our 3D model for steroid myopathy. Our findings revealed an upregulation of phosphorylated AKT by taurine, effectively countering the hyperactivation of the ubiquitin- proteasomal pathway. Importantly, we demonstrate that discontinuing corticosteroid treatment was insufficient to restore muscle mass and function. Taurine treatment, when administered concurrently with corticosteroids, notably enhanced contractile strength and protein turnover by upregulating the AKT-mTOR axis. Our model not only identifies a promising therapeutic target, but also suggests combinatorial treatment that may benefit individuals undergoing corticosteroid treatment or those diagnosed with adrenal tumors.
JTD Keywords: 3d bioengineered skeletal muscle tissues, Adrenal cortex hormones, Atroph, Colocalization, Corticosteroids, Dexamethasone, Glucocorticoid-receptor, Humans, Mechanisms, Models, biological, Mtor protein, human, Muscle contraction, Muscle fibers, skeletal, Muscle strength, Muscle, skeletal, Muscular diseases, Organ size, Phosphorylation, Proteasome endopeptidase complex, Proto-oncogene proteins c-akt, Receptors, glucocorticoid, Signal transduction, Skeletal-muscle, Steroid myopathy, Steroids, Supplementation, Taurin, Taurine, Tor serine-threonine kinases, Ubiquitin
Duran, J, (2023). Role of Astrocytes in the Pathophysiology of Lafora Disease and Other Glycogen Storage Disorders Cells 12, 722
Lafora disease is a rare disorder caused by loss of function mutations in either the EPM2A or NHLRC1 gene. The initial symptoms of this condition are most commonly epileptic seizures, but the disease progresses rapidly with dementia, neuropsychiatric symptoms, and cognitive deterioration and has a fatal outcome within 5–10 years after onset. The hallmark of the disease is the accumulation of poorly branched glycogen in the form of aggregates known as Lafora bodies in the brain and other tissues. Several reports have demonstrated that the accumulation of this abnormal glycogen underlies all the pathologic traits of the disease. For decades, Lafora bodies were thought to accumulate exclusively in neurons. However, it was recently identified that most of these glycogen aggregates are present in astrocytes. Importantly, astrocytic Lafora bodies have been shown to contribute to pathology in Lafora disease. These results identify a primary role of astrocytes in the pathophysiology of Lafora disease and have important implications for other conditions in which glycogen abnormally accumulates in astrocytes, such as Adult Polyglucosan Body disease and the buildup of Corpora amylacea in aged brains.
JTD Keywords: abnormal glycogen, accumulation, aggregation, bodies, branching enzyme deficiency, corpora-amylacea, epilepsy, glycogen, lafora disease, mice, mouse model, neurodegeneration, neuroinflammation, progressive myoclonus epilepsy, ubiquitin ligase, Glycogen, Neuroinflammation, Polyglucosan body disease