DONATE

Publications

by Keyword: Alzheimer’s disease

Andrés-Benito, P, Carmona, M, Pirla, MJ, Torrejón-Escribano, B, del Rio, J, Ferrer, I, (2023). Dysregulated Protein Phosphorylation as Main Contributor of Granulovacuolar Degeneration at the First Stages of Neurofibrillary Tangles Pathology Neuroscience 518, 119-140

The hippocampus of cases with neurofibrillary tangles (NFT) pathology classified as stages I–II, III–IV, and V–VI without comorbidities, and middle-aged (MA) individuals with no NFT pathology, were examined to learn about the composition of granulovacuolar degeneration (GVD). Our results confirm the presence of CK1-?, p38-P Thr180/Tyr182, SAPK/JNK-P Thr183/Thr185, GSK-3?/?-P Tyr279/Tyr216, and GSK-3? Ser9 in the cytoplasmic granules in a subset of neurons of the CA1 and CA2 subfields of the hippocampus. Also, we identify the presence of PKA ?/?-P Thr197, SRC-P Tyr416, PAK1-P Ser199/Ser204, CAMK2A-P Tyr197, and PKCG-P Thr655 in cytoplasmic granules in cases with NFT pathology, but not in MA cases. Our results also confirm the presence of ?-catenin-P Ser45/Thr41, IRE?-P Ser274, eIF2?-P Ser51, TDP-43-P Ser403-404 (but absent TDP-43), and ubiquitin in cytoplasmic granules. Other components of the cytoplasmic granules are MAP2-P Thr1620/1623, MAP1B-P Thr1265, ADD1-P Ser726, and ADD1/ADD1-P Ser726/Ser713, in addition to several tau species including 3Rtau, 4Rtau, and tau-P Ser262. The analysis of GVD at progressive stages of NFT pathology reveals the early appearance of phosphorylated kinases and proteins in cytoplasmic granules at stages I–II, before the appearance of pre-tangles and NFTs. Most of these granules are not surrounded by LAMP1-positive membranes. Markers of impaired ubiquitin-protesome system, abnormal reticulum stress response, and altered endocytic and autophagic pathways occur in a subpopulation of neurons containing cytoplasmic granules, and they appear later. These observations suggest early phosphorylation of kinases leading to their activation, and resulting in the abnormal phosphorylation of various substrates, including tau, as a main alteration at the first stages of GVD. © 2021 The Author(s)

JTD Keywords: alzheimer's disease, alzheimers association guidelines, alzheimer’s disease, brain aging, cyclin-dependent kinase-5, granulovacuolar degeneration, kinases, national institute, neuropathologic assessment, p38 kinase, progressive supranuclear palsy, protein phosphorylation, tau, tau pathology, up-regulation, upstream activator, Alzheimer's disease, Brain aging, Glycogen-synthase kinase-3, Granulovacuolar degeneration, Kinases, Protein phosphorylation, Tau


Ferrer, I, Andrés-Benito, P, Carmona, M, del Rio, JA, (2022). Common and Specific Marks of Different Tau Strains Following Intra-Hippocampal Injection of AD, PiD, and GGT Inoculum in hTau Transgenic Mice International Journal Of Molecular Sciences 23, 15940

Heterozygous hTau mice were used for the study of tau seeding. These mice express the six human tau isoforms, with a high predominance of 3Rtau over 4Rtau. The following groups were assessed: (i) non-inoculated mice aged 9 months (n = 4); (ii) Alzheimer's Disease (AD)-inoculated mice (n = 4); (iii) Globular Glial Tauopathy (GGT)-inoculated mice (n = 4); (iv) Pick's disease (PiD)-inoculated mice (n = 4); (v) control-inoculated mice (n = 4); and (vi) inoculated with vehicle alone (n = 2). AD-inoculated mice showed AT8-immunoreactive neuronal pre-tangles, granular aggregates, and dots in the CA1 region of the hippocampus, dentate gyrus (DG), and hilus, and threads and dots in the ipsilateral corpus callosum. GGT-inoculated mice showed unique or multiple AT8-immunoreactive globular deposits in neurons, occasionally extended to the proximal dendrites. PiD-inoculated mice showed a few loose pre-tangles in the CA1 region, DG, and cerebral cortex near the injection site. Coiled bodies were formed in the corpus callosum in AD-inoculated mice, but GGT-inoculated mice lacked globular glial inclusions. Tau deposits in inoculated mice co-localized active kinases p38-P and SAPK/JNK-P, thus suggesting active phosphorylation of the host tau. Tau deposits were absent in hTau mice inoculated with control homogenates and vehicle alone. Deposits in AD-inoculated hTau mice contained 3Rtau and 4Rtau; those in GGT-inoculated mice were mainly stained with anti-4Rtau antibodies, but a small number of deposits contained 3Rtau. Deposits in PiD-inoculated mice were stained with anti-3Rtau antibodies, but rare neuronal, thread-like, and dot-like deposits showed 4Rtau immunoreactivity. These findings show that tau strains produce different patterns of active neuronal seeding, which also depend on the host tau. Unexpected 3Rtau and 4Rtau deposits after inoculation of homogenates from 4R and 3R tauopathies, respectively, suggests the regulation of exon 10 splicing of the host tau during the process of seeding, thus modulating the plasticity of the cytoskeleton.

JTD Keywords: alzheimer's disease (ad), alzheimers-disease, brain, corticobasal degeneration, globular glial tauopathy (ggt), htau, isoforms, pathological tau, pick's disease (pid), picks-disease, propagation, protein, seeding, tau splicing, tauopathy, Alzheimer’s disease (ad), Globular glial tauopathy (ggt), Htau, Paired helical filaments, Pick’s disease (pid), Seeding, Tau, Tau splicing


Molina-Fernandez, R, Picon-Pages, P, Barranco-Almohalla, A, Crepin, G, Herrera-Fernandez, V, Garcia-Elias, A, Fanlo-Ucar, H, Fernandez-Busquets, X, Garcia-Ojalvo, J, Oliva, B, Munoz, FJ, (2022). Differential regulation of insulin signalling by monomeric and oligomeric amyloid beta-peptide Brain Commun 4, fcac243

Alzheimer's disease and Type 2 diabetes are pathological processes associated to ageing. Moreover, there are evidences supporting a mechanistic link between Alzheimer's disease and insulin resistance (one of the first hallmarks of Type 2 diabetes). Regarding Alzheimer's disease, amyloid beta-peptide aggregation into beta-sheets is the main hallmark of Alzheimer's disease. At monomeric state, amyloid beta-peptide is not toxic but its function in brain, if any, is unknown. Here we show, by in silico study, that monomeric amyloid beta-peptide 1-40 shares the tertiary structure with insulin and is thereby able to bind and activate insulin receptor. We validated this prediction experimentally by treating human neuroblastoma cells with increasing concentrations of monomeric amyloid. beta-peptide 1-40. Our results confirm that monomeric amyloid beta-peptide 1-40 activates insulin receptor autophosphorylation, triggering downstream enzyme phosphorylarions and the glucose Transporter 4 translocation to the membrane. On the other hand, neuronal insulin resistance is known to be associated to Alzheimer's disease since early stages. We thus modelled the docking of oligomeric amyloid peptide 1-40 to insulin receptor. We found that oligomeric amyloid. beta-peptide 1-40 blocks insulin receptor, impairing its activation. It was confirmed in vitro by observing the lack of insulin receptor autophosphorylation, and also the impairment of insulin-induced intracellular enzyme activations and the glucose Transporter 4 translocation to the membrane. By biological system analysis, we have carried out a mathematical model recapitulating the process that turns amyloid beta-peptide binding to insulin receptor from the physiological to the pathophysiological regime. Our results suggest that monomeric amyloid beta-peptide 1-40 contributes to mimic insulin effects in the brain, which could be good when neurons have an extra requirement of energy beside the well-known protective effects on insulin intracellular signalling, while its accumulation and subsequent oligomerization blocks the insulin receptor producing insulin resistance and compromising neuronal metabolism and protective pathways.

JTD Keywords: akt, alzheimer’s disease, amyloid β-peptide, insulin, A-beta, Aggregation, Akt, Alzheimer's disease, Alzheimers-disease, Amyloid beta-peptide, Brain, Design, Insulin, Insulin resistance, Precursor protein, Protein-protein docking, Receptor, Resistance, Site


Ferrer, I, Andrés-Benito, P, Garcia-Esparcia, P, López-Gonzalez, I, Valiente, D, Jordán-Pirla, M, Carmona, M, Sala-Jarque, J, Gil, V, del Rio, JA, (2022). Differences in Tau Seeding in Newborn and Adult Wild-Type Mice International Journal Of Molecular Sciences 23, 4789

Alzheimer’s disease (AD) and other tauopathies are common neurodegenerative diseases in older adults; in contrast, abnormal tau deposition in neurons and glial cells occurs only exceptionally in children. Sarkosyl-insoluble fractions from sporadic AD (sAD) containing paired helical filaments (PHFs) were inoculated unilaterally into the thalamus in newborn and three-month-old wild-type C57BL/6 mice, which were killed at different intervals from 24 h to six months after inoculation. Tau-positive cells were scanty and practically disappeared at three months in mice inoculated at the age of a newborn. In contrast, large numbers of tau-positive cells, including neurons and oligodendrocytes, were found in the thalamus of mice inoculated at three months and killed at the ages of six months and nine months. Mice inoculated at the age of newborn and re-inoculated at the age of three months showed similar numbers and distribution of positive cells in the thalamus at six months and nine months. This study shows that (a) differences in tau seeding between newborn and young adults may be related to the ratios between 3Rtau and 4Rtau, and the shift to 4Rtau predominance in adults, together with the immaturity of connections in newborn mice, and (b) intracerebral inoculation of sAD PHFs in newborn mice does not protect from tau seeding following intracerebral inoculation of sAD PHFs in young/adult mice.

JTD Keywords: alzheimer's disease, alzheimer-disease, alzheimer’s disease, expression, mouse tau, neurofibrillary tangles, newborn, pathological tau, propagation, protein-tau, spread, tau seeding and spreading, thalamus, transgenic mice, Paired helical filaments, Tau seeding and spreading, Thalamus


Andrés-Benito, P, Carmona, M, Jordán, M, Fernández-Irigoyen, J, Santamaría, E, del Rio, JA, Ferrer, I, (2022). Host Tau Genotype Specifically Designs and Regulates Tau Seeding and Spreading and Host Tau Transformation Following Intrahippocampal Injection of Identical Tau AD Inoculum International Journal Of Molecular Sciences 23, 718

Several studies have demonstrated the different characteristics of tau seeding and spreading following intracerebral inoculation in murine models of tau-enriched fractions of brain homogenates from AD and other tauopathies. The present study is centered on the importance of host tau in tau seeding and the molecular changes associated with the transformation of host tau into abnormal tau. The brains of three adult murine genotypes expressing different forms of tau—WT (murine 4Rtau), hTau (homozygous transgenic mice knock-out for murine tau protein and heterozygous expressing human forms of 3Rtau and 4Rtau proteins), and mtWT (homozygous transgenic mice knock-out for murine tau protein)—were analyzed following unilateral hippocampal inoculation of sarkosyl-insoluble tau fractions from the same AD and control cases. The present study reveals that (a) host tau is mandatory for tau seeding and spreading following tau inoculation from sarkosyl-insoluble fractions obtained from AD brains; (b) tau seeding does not occur following intracerebral inoculation of sarkosyl-insoluble fractions from controls; (c) tau seeding and spreading are characterized by variable genotype-dependent tau phosphorylation and tau nitration, MAP2 phosphorylation, and variable activation of kinases that co-localize with abnormal tau deposits; (d) transformation of host tau into abnormal tau is an active process associated with the activation of specific kinases; (e) tau seeding is accompanied by modifications in tau splicing, resulting in the expression of new 3Rtau and 4Rtau isoforms, thus indicating that inoculated tau seeds have the capacity to model exon 10 splicing of the host mapt or MAPT with a genotype-dependent pattern; (e) selective regional and cellular vulnerabilities, and different molecular compositions of the deposits, are dependent on the host tau of mice injected with identical AD tau inocula.

JTD Keywords: 3rtau and 4rtau, alzheimer's disease, alzheimer’s disease, brains, granulovacuolar degeneration, host tau, htau, intranuclear distribution, messenger-rna, pathological tau, propagation, protein-kinases, seeding and spreading, tauopathies, transmission, 3rtau and 4rtau, Alzheimers-disease, Alzheimer’s disease, Host tau, Htau, Seeding and spreading, Tauopathies


Leite, DM, Seifi, M, Ruiz-Perez, L, Nguemo, F, Plomann, M, Swinny, JD, Battaglia, G, (2022). Syndapin-2 mediated transcytosis of amyloid-beta across the blood brain barrier Brain Commun 4, fcac093

A deficient transport of amyloid-beta across the blood-brain barrier, and its diminished clearance from the brain, contribute to neurodegenerative and vascular pathologies, such as Alzheimer's disease and cerebral amyloid angiopathy, respectively. At the blood-brain barrier, amyloid-beta efflux transport is associated with the low-density lipoprotein receptor-related protein 1. However, the precise mechanisms governing amyloid-beta transport across the blood-brain barrier, in health and disease, remain to be fully understood. Recent evidence indicates that the low-density lipoprotein receptor-related protein 1 transcytosis occurs through a tuhulation-mediated mechanism stabilized by syndapin-2. Here, we show that syndapin-2 is associated with amyloid-beta clearance via low-density lipoprotein receptor-related protein 1 across the blood-brain barrier. We further demonstrate that risk factors for Alzheimer's disease, amyloid-beta expression and ageing, are associated with a decline in the native expression of syndapin-2 within the brain endothelium. Our data reveals that syndapin-2-mediated pathway, and its balance with the endosomal sorting, are important for amyloid-beta clearance proposing a measure to evaluate Alzheimer's disease and ageing, as well as a target for counteracting amyloid-beta build-up. Moreover, we provide evidence for the impact of the avidity of amyloid-beta assemblies in their trafficking across the brain endothelium and in low-density lipoprotein receptor-related protein 1 expression levels, which may affect the overall clearance of amyloid-beta across the blood-brain barrier.

JTD Keywords: alzheimer’s disease, amyloid-β, blood–brain barrier, syndapin-2, Alzheimer's disease, Alzheimers-disease, Amyloid-beta, Apolipoprotein-j, Blood-brain barrier, Clearance, Expression, Membrane invagination, Peptide, Protein, Rab gtpases, Receptor, Syndapin-2, Transport, Tubular transcytosis


Lidón, L, Llaó-Hierro, L, Nuvolone, M, Aguzzi, A, Avila, J, Ferrer, I, del Río, JA, Gavín, R, (2021). Tau exon 10 inclusion by prpc through downregulating gsk3? activity International Journal Of Molecular Sciences 22, 5370

Tau protein is largely responsible for tauopathies, including Alzheimer’s disease (AD), where it accumulates in the brain as insoluble aggregates. Tau mRNA is regulated by alternative splicing, and inclusion or exclusion of exon 10 gives rise to the 3R and 4R isoforms respectively, whose balance is physiologically regulated. In this sense, one of the several factors that regulate alternative splicing of tau is GSK3?, whose activity is inhibited by the cellular prion protein (PrPC), which has different physiological functions in neuroprotection and neuronal differentiation. Moreover, a relationship between PrPC and tau expression levels has been reported during AD evolution. For this reason, in this study we aimed to analyze the role of PrPC and the implication of GSK3? in the regulation of tau exon 10 alternative splicing. We used AD human samples and mouse models of PrPC ablation and tau overexpression. In addition, we used primary neuronal cultures to develop functional studies. Our results revealed a paralleled association between PrPC expression and tau 4R isoforms in all models analyzed. In this sense, reduction or ablation of PrPC levels induces an increase in tau 3R/4R balance. More relevantly, our data points to GSK3? activity downstream from PrPC in this phenomenon. Our results indicate that PrPC plays a role in tau exon 10 inclusion through the inhibitory capacity of GSK3?. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.

JTD Keywords: alternative splicing, alzheimer's disease, alzheimers-disease, alzheimer’s disease, amyloid-beta, cellular prion protein, frontotemporal dementia, glycogen-synthase kinase-3, gsk3 beta, gsk3?, gsk3β, messenger-rna, microtubule-associated protein tau, neurofibrillary tangles, progressive supranuclear palsy, promotes neuronal differentiation, stem-cells, tauopathies, Alternative splicing, Alzheimer’s disease, Cellular prion protein, Gsk3?, Microtubule-associated protein tau, Tauopathies


Marrugo-Ramírez, J, Mir, M, Samitier, J, Rodríguez-Núñez, M, Marco, MP, (2021). Kynurenic Acid Electrochemical Immunosensor: Blood-Based Diagnosis of Alzheimer's Disease Biosensors 11, 20

Alzheimer's disease (AD) is a neurodegenerative disorder, characterized by a functional deterioration of the brain. Currently, there are selected biomarkers for its diagnosis in cerebrospinal fluid. However, its extraction has several disadvantages for the patient. Therefore, there is an urgent need for a detection method using sensitive and selective blood-based biomarkers. Kynurenic acid (KYNA) is a potential biomarker candidate for this purpose. The alteration of the KYNA levels in blood has been related with inflammatory processes in the brain, produced as a protective function when neurons are damaged. This paper describes a novel electrochemical immunosensor for KYNA detection, based on successive functionalization multi-electrode array. The resultant sensor was characterized by cyclic voltammetry (CV), chronoamperometry (CA), and electrochemical impedance spectroscopy (EIS). The proposed biosensor detects KYNA within a linear calibration range from 10 pM to 100 nM using CA and EIS, obtaining a limit of detection (LOD) of 16.9 pM and 37.6 pM in buffer, respectively, being the lowest reported LOD for this biomarker. Moreover, to assess our device closer to the real application, the developed immunosensor was also tested under human serum matrix, obtaining an LOD of 391.71 pM for CA and 278.8 pM for EIS with diluted serum.

JTD Keywords: alzheimer’s disease (ad), blood analysis, chronoamperometry (ca), electrochemical biosensor, electrochemical impedance spectroscopy (eis), immunosensor, in vitro diagnosis (ivd), kynurenic acid (kyna), Alzheimer’s disease (ad), Blood analysis, Chronoamperometry (ca), Electrochemical biosensor, Electrochemical impedance spectroscopy (eis), Immunosensor, In vitro diagnosis (ivd), Kynurenic acid (kyna), Point of care diagnosis (poc)


Lidón, Laia, Urrea, Laura, Llorens, Franc, Gil, Vanessa, Alvarez, Ignacio, Diez-Fairen, Monica, Aguilar, Miguel, Pastor, Pau, Zerr, Inga, Alcolea, Daniel, Lleó, Alberto, Vidal, Enric, Gavín, Rosalina, Ferrer, Isidre, Del Rio, Jose Antonio, (2020). Disease-specific changes in Reelin protein and mRNA in Nnurodegenerative diseases Cells 9, (5), 1252

Reelin is an extracellular glycoprotein that modulates neuronal function and synaptic plasticity in the adult brain. Decreased levels of Reelin activity have been postulated as a key factor during neurodegeneration in Alzheimer’s disease (AD) and in aging. Thus, changes in levels of full-length Reelin and Reelin fragments have been revealed in cerebrospinal fluid (CSF) and in post-mortem brains samples of AD patients with respect to non-AD patients. However, conflicting studies have reported decreased or unchanged levels of full-length Reelin in AD patients compared to control (nND) cases in post-mortem brains and CSF samples. In addition, a compelling analysis of Reelin levels in neurodegenerative diseases other than AD is missing. In this study, we analyzed brain levels of RELN mRNA and Reelin protein in post-mortem frontal cortex samples from different sporadic AD stages, Parkinson’s disease with dementia (PDD), and Creutzfeldt-Jakob disease (sCJD), obtained from five different Biobanks. In addition, we measured Reelin protein levels in CSF samples of patients with mild cognitive impairment (MCI), dementia, or sCJD diagnosis and a group of neurologically healthy cases. The results indicate an increase in RELN mRNA in the frontal cortex of advanced stages of AD and in sCJD(I) compared to controls. This was not observed in PDD and early AD stages. However, Reelin protein levels in frontal cortex samples were unchanged between nND and advanced AD stages and PDD. Nevertheless, they decreased in the CSF of patients with dementia in comparison to those not suffering with dementia and patients with MCI. With respect to sCJD, there was a tendency to increase in brain samples in comparison to nND and to decrease in the CSF with respect to nND. In conclusion, Reelin levels in CSF cannot be considered as a diagnostic biomarker for AD or PDD. However, we feel that the CSF Reelin changes observed between MCI, patients with dementia, and sCJD might be helpful in generating a biomarker signature in prodromal studies of unidentified dementia and sCJD.

JTD Keywords: Reelin, Creutzfeldt-Jakob disease, Alzheimer’s disease, Parkinson’s disease dementia, a-synucleopathies, Cerebrospinal fluid


Gavín, Rosalina, Lidón, Laia, Ferrer, Isidre, del Río, José Antonio, (2020). The quest for cellular prion protein functions in the aged and neurodegenerating brain Cells 9, (3), 591

Cellular (also termed ‘natural’) prion protein has been extensively studied for many years for its pathogenic role in prionopathies after misfolding. However, neuroprotective properties of the protein have been demonstrated under various scenarios. In this line, the involvement of the cellular prion protein in neurodegenerative diseases other than prionopathies continues to be widely debated by the scientific community. In fact, studies on knock-out mice show a vast range of physiological functions for the protein that can be supported by its ability as a cell surface scaffold protein. In this review, we first summarize the most commonly described roles of cellular prion protein in neuroprotection, including antioxidant and antiapoptotic activities and modulation of glutamate receptors. Second, in light of recently described interaction between cellular prion protein and some amyloid misfolded proteins, we will also discuss the molecular mechanisms potentially involved in protection against neurodegeneration in pathologies such as Alzheimer’s, Parkinson’s, and Huntington’s diseases.

JTD Keywords: Prion, Tau, Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, Neuroprotection


Lidón, Laia, Vergara, Cristina, Ferrer, Isidro, Hernández, Félix, Ávila, Jesús, del Rio, Jose A., Gavín, Rosalina, (2020). Tau protein as a new regulator of cellular prion protein transcription Molecular Neurobiology 57, (10), 4170-4186

Cellular prion protein (PrPC) is largely responsible for transmissible spongiform encephalopathies (TSEs) when it becomes the abnormally processed and protease resistant form PrPSC. Physiological functions of PrPC include protective roles against oxidative stress and excitotoxicity. Relevantly, PrPC downregulates tau levels, whose accumulation and modification are a hallmark in the advance of Alzheimer's disease (AD). In addition to the accumulation of misfolded proteins, in the initial stages of AD-affected brains display both increased reactive oxygen species (ROS) markers and levels of PrPC. However, the factors responsible for the upregulation of PrPC are unknown. Thus, the aim of this study was to uncover the different molecular actors promoting PrPC overexpression. In order to mimic early stages of AD, we used β-amyloid-derived diffusible ligands (ADDLs) and tau cellular treatments, as well as ROS generation, to elucidate their particular roles in human PRNP promoter activity. In addition, we used specific chemical inhibitors and site-specific mutations of the PRNP promoter sequence to analyze the contribution of the main transcription factors involved in PRNP transcription under the analyzed conditions. Our results revealed that tau is a new modulator of PrPC expression independently of ADDL treatment and ROS levels. Lastly, we discovered that the JNK/c-jun-AP-1 pathway is involved in increased PRNP transcription activity by tau but not in the promoter response to ROS.

JTD Keywords: Alzheimer’s disease, Cellular prion protein, Promoter, Tau, Tauopathies


Franco, Rafael, Aguinaga, David, Reyes, Irene, Canela, Enric I., Lillo, Jaume, Tarutani, Airi, Hasegawa, Masato, del Ser-Badia, Anna, del Rio, José A., Kreutz, Michael R., Saura, Carlos A., Navarro, Gemma, (2018). N-methyl-D-aspartate receptor link to the MAP kinase pathway in cortical and hippocampal neurons and microglia Is dependent on calcium sensors and Is blocked by α-Synuclein, Tau, and phospho-Tau in non-transgenic and transgenic APPSw,Ind Mice Frontiers in Molecular Neuroscience 11, (273), Article 273

N-methyl-D-aspartate receptors (NMDARs) respond to glutamate to allow the influx of calcium ions and the signaling to the mitogen-activated protein kinase (MAPK) cascade. Both MAPK- and Ca2+-mediated events are important for both neurotransmission and neural cell function and fate. Using a heterologous expression system, we demonstrate that NMDAR may interact with the EF-hand calcium-binding proteins calmodulin, calneuron-1, and NCS1 but not with caldendrin. NMDARs were present in primary cultures of both neurons and microglia from cortex and hippocampus. Calmodulin in microglia, and calmodulin and NCS1 in neurons, are necessary for NMDA-induced MAP kinase pathway activation. Remarkably, signaling to the MAP kinase pathway was blunted in primary cultures of cortical and hippocampal neurons and microglia from wild-type animals by proteins involved in neurodegenerative diseases: α-synuclein, Tau, and p-Tau. A similar blockade by pathogenic proteins was found using samples from the APPSw,Ind transgenic Alzheimer’s disease model. Interestingly, a very marked increase in NMDAR–NCS1 complexes was identified in neurons and a marked increase of both NMDAR–NCS1 and NMDAR–CaM complexes was identified in microglia from the transgenic mice. The results show that α-synuclein, Tau, and p-Tau disrupt the signaling of NMDAR to the MAPK pathway and that calcium sensors are important for NMDAR function both in neurons and microglia. Finally, it should be noted that the expression of receptor–calcium sensor complexes, specially those involving NCS1, is altered in neural cells from APPSw,Ind mouse embryos/pups.

JTD Keywords: Alzheimer’s disease, Calmodulin, Calneuron-1, Caldendrin, NCS1, Extracellular signal-regulated kinase, Glutamate receptor, Proximity ligation assay


Valls-Comamala, V., Guivernau, B., Bonet, J., Puig, M., Perálvarez-Marín, A., Palomer, E., Fernàndez-Busquets, X., Altafaj, X., Tajes, M., Puig-Pijoan, A., Vicente, R., Oliva, B., Muñoz, F. J., (2017). The antigen-binding fragment of human gamma immunoglobulin prevents amyloid β-peptide folding into β-sheet to form oligomers Oncotarget 8, (25), 41154-41165

The amyloid beta-peptide (Aβ) plays a leading role in Alzheimer’s disease (AD) physiopathology. Even though monomeric forms of Aβ are harmless to cells, Aβ can aggregate into β-sheet oligomers and fibrils, which are both neurotoxic. Therefore, one of the main therapeutic approaches to cure or delay AD onset and progression is targeting Aβ aggregation. In the present study, we show that a pool of human gamma immunoglobulins (IgG) protected cortical neurons from the challenge with Aβ oligomers, as assayed by MTT reduction, caspase-3 activation and cytoskeleton integrity. In addition, we report the inhibitory effect of IgG on Aβ aggregation, as shown by Thioflavin T assay, size exclusion chromatography and atomic force microscopy. Similar results were obtained with Palivizumab, a human anti-sincitial virus antibody. In order to dissect the important domains, we cleaved the pool of human IgG with papain to obtain Fab and Fc fragments. Using these cleaved fragments, we functionally identified Fab as the immunoglobulin fragment inhibiting Aβ aggregation, a result that was further confirmed by an in silico structural model. Interestingly, bioinformatic tools show a highly conserved structure able to bind amyloid in the Fab region. Overall, our data strongly support the inhibitory effect of human IgG on Aβ aggregation and its neuroprotective role.

JTD Keywords: Alzheimer’s disease, Amyloid, Immunoglobulin, Fab, Oligomers


Garcia-Esparcia, Paula, López-González, Irene, Grau-Rivera, Oriol, García-Garrido, María Francisca, Konetti, Anusha, Llorens, Franc, Zafar, Saima, Carmona, Margarita, del Rio, José Antonio, Zerr, Inga, Gelpi, Ellen, Ferrer, Isidro, (2017). Dementia with Lewy Bodies: Molecular pathology in the frontal cortex in typical and rapidly progressive forms Frontiers in Neurology 8, Article 89

Objectives: The goal of this study was to assess mitochondrial function, energy, and purine metabolism, protein synthesis machinery from the nucleolus to the ribosome, inflammation, and expression of newly identified ectopic olfactory receptors (ORs) and taste receptors (TASRs) in the frontal cortex of typical cases of dementia with Lewy bodies (DLB) and cases with rapid clinical course (rpDLB: 2 years or less) compared with middle-aged non-affected individuals, in order to learn about the biochemical abnormalities underlying Lewy body pathology. Methods: Real-time quantitative PCR, mitochondrial enzymatic assays, and analysis of β-amyloid, tau, and synuclein species were used. Results: The main alterations in DLB and rpDLB, which are more marked in the rapidly progressive forms, include (i) deregulated expression of several mRNAs and proteins of mitochondrial subunits, and reduced activity of complexes I, II, III, and IV of the mitochondrial respiratory chain; (ii) reduced expression of selected molecules involved in energy metabolism and increased expression of enzymes involved in purine metabolism; (iii) abnormal expression of nucleolar proteins, rRNA18S, genes encoding ribosomal proteins, and initiation factors of the transcription at the ribosome; (iv) discrete inflammation; and (v) marked deregulation of brain ORs and TASRs, respectively. Severe mitochondrial dysfunction involving activity of four complexes, minimal inflammatory responses, and dramatic altered expression of ORs and TASRs discriminate DLB from Alzheimer’s disease. Altered solubility and aggregation of α-synuclein, increased β-amyloid bound to membranes, and absence of soluble tau oligomers are common in DLB and rpDLB. Low levels of soluble β-amyloid are found in DLB. However, increased soluble β-amyloid 1–40 and β-amyloid 1–42, and increased TNFα mRNA and protein expression, distinguish rpDLB. Conclusion: Molecular alterations in frontal cortex in DLB involve key biochemical pathways such as mitochondria and energy metabolism, protein synthesis, purine metabolism, among others and are accompanied by discrete innate inflammatory response.

JTD Keywords: Dementia with Lewy bodies, Alzheimer’s disease, α-synuclein, Mitochondria, Protein synthesis, Inflammation, β-amyloid, Olfactory receptors