DONATE

Publications

by Keyword: X ray photoelectron spectroscopy

García-Mintegui, C, Chausse, V, Labay, C, Mas-Moruno, C, Ginebra, MP, Cortina, JL, Pegueroles, M, (2024). Dual peptide functionalization of Zn alloys to enhance endothelialization for cardiovascular applications Applied Surface Science 645, 158900

A new generation of fully bioresorbable metallic Zn-based alloys could be used for stenting applications; however, the initial surface degradation delays stent re-endothelialization. Thus, this work proposes a dual strategy to control the corrosion and accelerate the endothelialization of ZnMg and ZnAg biodegradable alloys. First, a stable polycaprolactone (PCL) coating is obtained and followed by its functionalization with either linear RGD (Arg-Gly-Asp) or REDV (Arg-Glu-Asp-Val) peptides or a dual peptide-based platform combining both sequences (RGD-REDV). Scratching tests showed neither delamination nor detachment of the polymeric coating. Potentiodynamic polarization (PDP) and electrochemical impedance spectroscopy (EIS) measurements confirmed the corrosion resistance after PCL coating by revealing lower current density and higher absolute impedance values. X-ray photoelectron spectroscopy (XPS) and fluorescent microscopy confirmed the correct peptide immobilization onto PCL coated Zn alloys. The functionalized samples exhibited enhanced human umbilical vein endothelial cells (HUVEC) adhesion. The higher number of adhered cells to the functionalized surfaces with the RGD-REDV platform demonstrates the synergistic effect of combining both RGD and REDV sequences. Higher corrosion resistance together with enhanced endothelialization indicates that the dual functionalization of Zn alloys with PCL and peptide-based RGD-REDV platform holds great potential to overcome the clinical limitations of current biodegradable metal stents.

JTD Keywords: Binary alloys, Biodegradable metals, Bioresorbable, Cardiovascular applications, Cell adhesive peptides, Corrosion, Corrosion resistance, Corrosion resistant alloys, Corrosion resistant coatings, Degradation, Dual peptide-based platform, Electrochemical corrosion, Electrochemical impedance spectroscopy, Endothelial cells, Endothelialization, Functionalization, Functionalizations, In-vitro, Magnesium alloys, Metallics, Mg alloy, Peptides, Polycaprolactone coating, Polymer-coatings, Rgd-functionalization, Silver alloys, Stents, Surface, X ray photoelectron spectroscopy, Zinc, Zinc alloys, Zn alloys, Zn-based alloys


Sans, J, Arnau, M, Sanz, V, Turon, P, Alemán, C, (2022). Hydroxyapatite-based biphasic catalysts with plasticity properties and its potential in carbon dioxide fixation Chemical Engineering Journal 433, 133512

The design of catalysts with controlled selectivity at will, also known as catalytic plasticity, is a very attractive approach for the recycling of carbon dioxide (CO2). In this work, we study how catalytically active hydroxyapatite (HAp) and brushite (Bru) interact synergistically, allowing the production of formic acid or acetic acid depending on the HAp/Bru ratio in the catalyst. Raman, wide angle X-ray scattering, X-ray photoelectron spectroscopy, scanning electron microscopy and electrochemical impedance spectroscopy studies, combined with an exhaustive revision of the crystalline structure of the catalyst at the atomic level, allowed to discern how the Bru phase can be generated and stabilized at high temperatures. Results clearly indicate that the presence of OH– groups to maintain the crystalline structural integrity in conjunction with Ca2+ ions less bonded to the lattice fixate carbon into C1, C2 and C3 molecules from CO2 and allow the evolution from formic to acetic acid and acetone. In this way, the plasticity of the HAp-Bru system is demonstrated, representing a promising green alternative to the conventional metal-based electrocatalysts used for CO2 fixation. Thus, the fact that no electric voltage is necessary for the CO2 reduction has a very favorable impact in the final energetic net balance of the carbon fixation reaction. © 2021

JTD Keywords:

ethanol production & nbsp, brushite, co2 reduction, conversion, electrocatalytic reduction, electrode, formate, heterogeneous catalysis & nbsp, hydrogen evolution, insights, monetite, polarized hydroxyapatite,

, Acetic acid, Acetone, Biphasic catalyst, Brushite, Calcium phosphate, Carbon dioxide, Carbon dioxide fixation, Catalysis, Catalyst selectivity, Co 2 reduction, Co2 reduction, Electrocatalysts, Electrochemical impedance spectroscopy, Electrochemical reduction, Electrochemical-impedance spectroscopies, Ethanol production, Formic acid, Heterogeneous catalysis, Hydroxyapatite, Ph, Polarized hydroxyapatite, Property, Reduction, Scanning electron microscopy, Temperature programmed desorption, Wide angle x-ray scattering, X ray photoelectron spectroscopy, X ray scattering, ]+ catalyst


Boda, SK, Aparicio, C, (2022). Dual keratinocyte-attachment and anti-inflammatory coatings for soft tissue sealing around transmucosal oral implants Biomaterials Science 10, 665-677

Unlike the attachment of soft epithelial skin tissue to penetrating solid natural structures like fingernails and teeth, sealing around percutaneous/permucosal devices such as dental implants is hindered by inflammation and epidermal down growth. Here, we employed a dual keratinocyte-adhesive peptide and anti-inflammatory biomolecule coating on titanium to promote oral epithelial tissue attachment. For minimizing inflammation-triggered epidermal down growth, we coated pristine and oxygen plasma pre-treated polished titanium (pTi) with conjugated linoleic acid (CLA). Further, in order to aid in soft tissue attachment via the formation of hemidesmosomes, adhesive structures by oral keratinocytes, we coated the anionic linoleic acid (LA) adsorbed titanium with cationic cell adhesive peptides (CAP), LamLG3, a peptide derived from Laminin 332, the major extracellular matrix component of the basement membrane in skin tissue and Net1, derived from Netrin-1, a neural chemoattractant capable of epithelial cell attachment via alpha 6 beta 4 integrins. The dual CLA-CAP coatings on pTi were characterized by X-ray photoelectron spectroscopy and dynamic water contact angle measurements. The proliferation of human oral keratinocytes (TERT-2/OKF6) was accelerated on the peptide coated titanium while also promoting the expression of Col XVII and beta-4 integrin, two markers for hemidesmosomes. Simultaneously, CLA coating suppressed the production of inducible nitric oxide synthase (anti-iNOS); a pro-inflammatory M1 marker expressed in lipopolysaccharide (LPS) stimulated murine macrophages (RAW 264.7) and elevated expression of anti-CD206, associated to an anti-inflammatory M2 macrophage phenotype. Taken together, the dual keratinocyte-adhesive peptide and anti-inflammatory biomolecule coating on titanium can help reduce inflammation and promote permucosal/peri-implant soft tissue sealing.

JTD Keywords: Adhesives, Animal, Animals, Anti-inflammatories, Anti-inflammatory agents, Antiinflammatory agent, Biomolecules, Bone, Cell adhesion, Cell-adhesives, Coatings, Conjugated linoleic acid, Conjugated linoleic-acid, Contact angle, Hemidesmosome, Hemidesmosomes, Human, Humans, Hydroxyapatite, Inflammation, Integrins, Keratinocyte, Keratinocytes, Linoleic acid, Macrophages, Mice, Mouse, Nitric oxide, Oral implants, Pathology, Peptides, Skin tissue, Soft tissue, Supplementation, Surface properties, Surface property, Tissue, Titania, Titanium, X ray photoelectron spectroscopy